

An *Unofficial* BOSS DR12 Analysis: Cosmology from the Galaxy Power Spectrum and Bispectrum

Oliver Philcox (Princeton / IAS) Misha Ivanov (IAS)

with Giovanni Cabass (IAS), Marko Simonovic (CERN), and Matias Zaldarriaga (IAS)

Tri-State Cosmology Meeting, CCA 18/02/22

COSMOLOGY FROM SPECTROSCOPIC SURVEYS

Big Telescope

10⁶ Galaxy Positions

WHAT DO WE DO WITH THE DATA?

Compress the 10⁶ galaxy positions to a power spectrum

- Use a scaling analysis to measure:
 - Overall amplitude (= primordial amplitude)
 - **Wiggle** positions (= BAO feature)

Robust way to constrain growth rate and expansion history, H(z)

WHAT DO WE DO WITH THE DATA?

Compress the 10⁶ galaxy positions to a power spectrum

- Use a scaling analysis to measure:
 - Overall amplitude (= primordial amplitude)
 - **Wiggle** positions (= BAO feature)

Robust way to constrain growth rate and expansion history, H(z)

WHAT <u>COULD</u> WE DO WITH THE DATA?

> This is not all the available information!

WHAT <u>COULD</u> WE DO WITH THE DATA?

> This is not all the available information!

Measure parameters directly from the full shape of the galaxy power spectrum

 \triangleright This is just like for the CMB!

This needs an accurate theory model...

THE EFFECTIVE FIELD THEORY OF LARGE SCALE STRUCTURE

> Analytic theory for $\delta(\mathbf{x})$, based on the fluid equations

This includes:

- Back-reaction of small-scale physics on large-scale modes
- Long-wavelength displacements
- Galaxy bias
- Redshift-space distortions
- Primordial non-Gaussianity etc.

Arbitrarily accurate on large scales!

$$\vec{v} = \vec{v}$$

 \dot{v}^{i} + H v^{i} + v^{j} $\delta_{j}v^{i}$ = $\frac{4}{\rho}$ $\delta_{j}\tau^{ij}$

7

WHAT <u>COULD</u> WE DO WITH THE DATA?

Theory tested at high precision in blind mock challenges → it works!

Applied to BOSS power spectra

	H ₀	Ω_m	σ_8
BOSS 2021	68.8 ± 1.2	0.32 ± 0.01	0.73 ± 0.04
Planck 2018 (TT, TE, EE, Iow-I, Iensing)	67.4 <u>+</u> 0.5	0.315 ± 0.007	0.811 ± 0.006

WHAT <u>ELSE</u> CAN WE DO WITH THE DATA?

Add the **wiggly** information from **baryon acoustic oscillations**

Philcox+20 (see also Chen+21, d'Amico+20)

WHAT <u>ELSE</u> CAN WE DO WITH THE DATA?

- No Fingers-of-God!
- Push to $k_{\rm max}=0.4h/{
 m Mpc}$
- Constraints improve by (10 100)%

WHAT <u>ELSE</u> CAN WE DO WITH THE DATA?

11

Add the galaxy bispectrum:

$$B_g(k_1, k_2, k_3) = \langle \delta_g(\mathbf{k}_1) \delta_g(\mathbf{k}_2) \delta_g(\mathbf{k}_3) \rangle'$$

This is <u>hard</u>:

- Window functions
- Theory model

THE MASKED BISPECTRUM

Problem: We don't measure the density field directly.

$$\delta_g(\mathbf{r}) \to W(\mathbf{r}) \delta_g(\mathbf{r}) \qquad \delta_g(\mathbf{k}) \to \int \frac{d\mathbf{p}}{(2\pi)^3} W(\mathbf{k} - \mathbf{p}) \delta_g(\mathbf{p})$$
Window Function

The measured bispectrum is a triple convolution

$$B_g(\mathbf{k}_1, \mathbf{k}_2) \to \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

Solution: Convolve the theory model too

This is too expensive to do properly!

BISPECTRA WITHOUT WINDOWS

Alternatively: estimate the unwindowed bispectrum directly

$$B_g^{\min}(\mathbf{k}_1, \mathbf{k}_2) = \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

Derive a maximum-likelihood estimator for the true bispectrum

Effectively **deconvolves** the window

$$\nabla_{B_g} L[\text{data}|B_g] = 0 \quad \Rightarrow \quad \widehat{B}_g = \cdots$$

See <u>GitHub.com/oliverphilcox/BOSS-Without-Windows</u>

MODELLING THE BISPECTRUM

Model:

- Tree-level theory
- Second-order galaxy bias
- Large-scale displacements
- Coordinate transformations
- Fingers-of-God

Tested on 566 $(\text{Gpc}/\text{h})^3$ simulations Accurate up to $k_{max} = 0.08 \ h/\text{Mpc}$

$\textbf{Data} \div \textbf{Theory} - \textbf{1}$

lvanov+21

THE UNOFFICIAL BOSS DR12 ANALYSIS

THE UNOFFICIAL BOSS DR12 ANALYSIS - TESTING

Validate with **Nseries** mocks

 \circ All parameters recovered at $\ll 1\sigma$

 \odot Theory model works!

 \circ Window function works!

• Fiber collisions work!

Philcox+21

THE UNOFFICIAL BOSS DR12 ANALYSIS - RESULTS

 $\circ \Lambda CDM$ analysis gives **tight** parameter constraints

 \circ **H**₀ agrees with *Planck*

 \circ **S**₈ = 0.75 ± 0.04 agrees with weak lensing

	H ₀	Ω_m	σ_8
BOSS Pk	68.8 ± 1.2	0.32 ± 0.01	0.73 ± 0.04
BOSS All	68.3 ± 0.8	0.32 ± 0.01	0.72 ± 0.03
Planck 2018 (TT, TE, EE, low-I, lensing)	67.4 ± 0.5	0.315 ± 0.007	0.811 ± 0.006

THE UNOFFICIAL BOSS DR12 ANALYSIS

Can constrain **other** parameters:

 $n_s = 0.87 \pm 0.07$

Neutrino mass

 \circ Sound-Horizon free H₀ measurements

• Bias relations (3x better with bispectra!)

All analysis is public: github.com/oliverphilcox/full_shape_likelihoods

Philcox+21 (see also Chen+21, d'Amico+21)

WHAT'S NEXT?

New / Better Statistics

- One-Loop Bispectrum
- Bispectrum **Multipoles**
- Trispectrum
- Correlation Functions?

Apply this to DESI?

New Things to Learn

- Primordial Non-Gaussianity (see Misha's talk)
- Ultra-Light Axions
- Early Dark Energy
- Massive Spinning Particles

and much more...

Cabass+22, d'Amico+22, Dizgah+18, Ivanov+20, ...

arXiv 2112.04515 2110.10161 2110.00006 2002.04035 1909.05277

CONCLUSIONS

• We can **directly** extract cosmological parameters from galaxy surveys

 This will (eventually) become stronger than the CMB

 New statistics give extra information and can be robustly measured & modelled