

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Particle Coliders In the Sky

Learning 10^{13} TeV physics with 10^{-16} TeV data

Oliver H. E. Philcox

Junior Fellow @ Simons Foundation Postdoc @ Columbia Assistant Prof @ Stanford [from September]

Roadmap of this Talk

iction Physics

What happened here??

Cosmic Microwave Background

How can we detect it here?

What do we think we know about inflation?

Background

• Almost *exponential* expansion of spacetime \Rightarrow Solves flatness / horizon / monopole problems

Perturbations

 Quantum vacuum fluctuations sourced classical perturbations in the curvature, $\zeta(\mathbf{x})$

 \Rightarrow The distribution of ζ should be Gaussian! $\zeta(\mathbf{k}) \sim \text{Normal}[P_{\zeta}(k)], \qquad P_{\zeta}(k) \sim \langle \zeta(\mathbf{k})\zeta^*(\mathbf{k}) \rangle$

(k = Fourier-space momentum)

Quantum Fluctuations

COBE, WMAP, Planck, Linde, Guth, Starobinsky, ...

What do we think we know about inflation?

Simplest (phenomenological) model

- A single field, ϕ evolving along an almost flat potential
- Curvature is sourced by **quantum fluctuations** in $\delta\phi$

Linde, Guth, Starobinsky, Lyth, Mukhanov, Sasaki, ...

What do we want to know about inflation?

<u>Simplest (phenomenological) model</u>

- A single field, ϕ evolving along an almost flat potential
- Curvature is sourced by **quantum fluctuations** in $\delta\phi$

HOWEVER:

- What sets the **potential**?
- Were there **other fields** during inflation?
- Did the fields **interact**?

Linde, Guth, Starobinsky, Lyth, Mukhanov, Sasaki, ...

Two-Point Functions

- Let's assume we have just a **single field** ϕ in inflation (the "inflaton") \bullet
- The simplest inflationary action is **quadratic in perturbations**:

Flat-Space

Since $\delta \phi$ sources curvature ζ , we get a two-point function at the end of inflation:

$$P_{\zeta}(k) = \langle \zeta(\mathbf{k})\zeta(-\mathbf{k})\rangle \sim k^{n_s}$$

Three-Point Functions (Contact)

We could add **cubic** terms to the action

These lead to curvature **bispectra**:

 $\delta \phi$ $\delta \phi$ $\delta \phi$

de Sitter

 $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\mathrm{NL}} \times \mathrm{shape}$

See the Effective Field Theory of Inflation (Senatore, Zaldarriaga, Creminelli, Baumann, ...)

Four-Point Functions (Contact)

• We could also add **quartic** terms to the action

These lead to curvature trispectra $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \sim g_{\rm NL} \times {\rm shape}$

 $\mathscr{L} \supset \delta \dot{\phi}^4, \quad \delta \dot{\phi}^2 (\partial \phi)^2, \quad (\partial \phi)^4$

(Note: $\delta \dot{\phi}^2 (\partial \phi)^2$, $(\partial \phi)^4$ are suppressed in single-field inflation)

de Sitter

δφδφδφδφ

See the Effective Field Theory of Inflation (Senatore, Zaldarriaga, Creminelli, Baumann, ...)

Three-Point Functions (Exchange)

These lead to curvature **bispectra** $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\rm NL}^{\rm local} \times {\rm shape}$

See the Effective Field Theory of Inflation (Senatore, Zaldarriaga, Creminelli, Baumann, ...)

Four-Point Functions (Exchange)

These lead to curvature **trispectra**

$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \sim \tau_{\mathrm{NL}}^{\mathrm{local}} \times \mathrm{shape}$

Arkani-Hamed, Maldacena, Lee, Moradinezhad, Cabass, Pajer, Jazayeri, Baumann... 10

The Cosmological Collider

- The four-point function tracks the **exchange** of a particle $\sigma_{\mu_1\cdots\mu_s}$ of mass $m_{\sigma} \sim H$ and spin $s = 0, 1, 2, \cdots$
- This depends on the **power spectrum** of σ , including all its helicity states, $\sigma^{(\lambda)}$

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \sim \sum_{\lambda} P_{\zeta}(k_1)P_{\zeta}(k_3)P_{\sigma(\lambda)}(K)$$

- In the **collapsed limit** (low exchange momentum), the inflationary signatures are set by symmetry
- They depend **only** on mass and spin (and the speed) **not** on the microphysical model!

By studying the trispectrum we can probe new particles present during inflation!

) x coupling

Maldacena, Arkani-Hamed, Jazayeri, Pajer, Zaldarriaga, Lee, Moradinezhad, Cabass, Baumann, ...

How to Measure Primordial Non-Gaussianity

• The curvature perturbation ζ sets the initial conditions for the late Universe!

Cosmic Microwave Background Correlator

 $\langle \delta T^n \rangle \neq 0?$

(tracing **photon energies**)

Galaxy Distribution Correlator

$$\langle \delta \rho_{\text{galaxy}}^n \rangle \neq 0?$$

(tracing **dark matter**)

Planck, IllustrisTNG

Observational Constraints

- Previous CMB experiments have placed strong constraints on threepoint functions across many scenarios (self-interactions, light fields, colliders, ...)
- So far, there have been **no detections**: $10^{-5} |f_{\rm NL}| \ll 1$
- <u>Very</u> few works have considered the four-point functions
- Are they worth investigating?

Yes!

Cubic-terms in the Lagrangian could be **protected** by symmetry ullet

$$\mathscr{L} \sim \frac{1}{2} (\partial \sigma)^2 + \dot{\sigma}^3 + \dot{\sigma} (\partial \sigma)^2 + \delta \sigma^4$$

(for a general light scalar σ , ignoring coupling amplitudes) Killed by \mathbb{Z}_2 symmetry ($\sigma \rightarrow -\sigma$), or some supersymmetries

• Four-point functions can reveal **hidden particle physics**

Linear Physics

¹³Planck 2018, Smith+, Senatore+, Maldacena, Creminelli, Fergusson+, Shellard+, Sohn+

How to Measure a Four-Point Function

- CMB experiments measure the **temperature** and **polarization** across the whole sky $T(\theta,\phi), \quad E(\theta,\phi) \quad \leftrightarrow \quad a_{\ell m}^T, \quad a_{\ell m}^E$
- Since the physics is **linear** we just need to correlate the CMB at four angles

 $\langle T(\theta_1, \phi_1) T(\theta_2, \phi_2) T(\theta_3, \phi_3) T(\theta_4, \phi_4) \rangle \leftrightarrow \langle a_{\ell_1 m_1}^T a_{\ell_2 m_2}^T a_{\ell_3 m_3}^T a_{\ell_4 m_4}^T \rangle$

BUT:

- The trispectrum is 8-dimensional!?
- There's 10²⁸ combinations of points?!

Planck 2018

To compress the data, we'll use techniques from signal processing

- We compress all 10^{28} elements into a **single** number!
- This encodes the **amplitude** of a specific model, e.g., $\tau_{\rm NL}$, which traces the **microphysics** of inflation

• This depends on a theory model which can be easily computed from the primordial prediction, $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle$

$$a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4})$$

Data

In practice, we have to be a bit careful:

- This estimator is **biased** even in a perfectly Gaussian universe!
 - We need to **subtract off** the Gaussian contribution!

$$\widehat{A} \sim \sum_{\ell_1 m_1 \ell_2 m_2 \ell_3 m_3 \ell_4 m_4} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}^{\dagger} \times$$

2. We need to add a **normalization** to make sure we get out the right value!

normalization ~
$$\sum_{\ell_i m_i} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}^{\dagger}$$

We need to carefully weight the data and remove the galaxy 3.

$$a_{\ell m} \to \operatorname{weight}(a)_{\ell m}$$

Need to remove Galactic dust

 $\times \left[a_{\ell_{1}m_{1}}a_{\ell_{2}m_{2}}a_{\ell_{3}m_{3}}a_{\ell_{4}m_{4}} - \langle a_{\ell_{1}m_{1}}a_{\ell_{2}m_{2}} \rangle \langle a_{\ell_{3}m_{3}}a_{\ell_{4}m_{4}} \rangle + \cdots \right]$

 $\langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}$

(More complex with beams & masks)

We **still** have a problem!!

These estimators require summing over $\mathcal{O}(\ell_{\max}^8)$ components (with $\ell_{\max} \sim 2000$)

$$\widehat{A} \sim \sum_{\ell_1 m_1 \ell_2 m_2 \ell_3 m_3 \ell_4 m_4} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}^{\dagger} \times \left[a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}^{\dagger} \right]$$

• If the underlying trispectrum can be **separated:**

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \rightarrow \sum f(k_1)f(k_2)f(k_3)f(k_4)F($$

we can **rewrite** the estimator in terms of **low-dimensional integrals**, harmonic transforms, and Monte Carlo summation:

$$\widehat{A} \sim \sum_{i=1}^{N_{\text{pixels}}} \int dr \left(\sum_{\ell m} a_{\ell m} f_{\ell}(r, i) \right)^{4}$$

• This reduces the computational costs to just $\mathcal{O}(\ell_{\max}^2 \log \ell_{\max})!$

 $a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} + \cdots$

(Possibly including $\int or \int \int$) (S),

inflation parameters

Komatsu, Spergel, Wandelt, Sekiguchi+13, Smith+15, Philcox 25a

The result: **fast** estimation of four-point amplitudes!

The estimators are

- **Unbiased** (by the mask, geometry, beams, lensing, ...)
- *Efficient* (limited by spherical harmonic transforms)
- Minimum-Variance (they saturate the Cramer-Rao bound)
- Open-Source (entirely written in Python/Cython)
- General (17 classes of model included so far)

Public at https://github.com/oliverphilcox/PolySpec

inflation parameters

The Planck Trispectrum

Planck PR4/NPIPE data

100 FFP10 simulations

Optimal Weighting

Beam & Mask

Transfer Functions

(+ many systematics tests)

 $g_{\rm NL}, \tau_{\rm NL}$ + 31 others

Results: Local Non-Gaussianity

Model: non-linear effects + light particles $(m_{\sigma} \rightarrow 0)$

- Constrains inflationary effects such as:
 - **Curvatons** (perturbations sourced by a second light field)
 - **Bouncing / ekpyrotic** universes \bullet
 - New particles uncorrelated with the inflaton

Outcome: Consistent with zero!

• (30 - 40%) better than any previous constraints

T+Pol > T-only

20

Planck 2013, Marzouk+22, Philcox 25c

Results: Local Non-Gaussianity

Model: non-linear effects + light particles $(m_{\sigma} \rightarrow 0)$

$$\langle \zeta^4 \rangle \sim P_{\zeta}(k_{\text{short}})P(k'_{\text{short}})P_{\zeta}(k_{\text{long}})$$

- Constrains inflationary effects such as:
 - **Curvatons** (perturbations sourced by a second light) field)
 - **Bouncing / ekpyrotic** universes
 - New particles uncorrelated with the inflaton

Outcome: Consistent with zero!

• (30 - 40%) better than any previous constraints

"Power spectrum of the power spectrum"

Results: Equilateral Non-Gaussianity

Model: *self-interactions* in inflation

- Constrains models such as:
 - Effective Field Theory couplings
 - **DBI** inflation (string theory + small sound-speed) \bullet
 - **Generic** single-field inflation (including *Lorentz*) ● *Invariant* models)
 - **Ghost** inflation, **k**-inflation, and beyond...

Outcome: Consistent with zero!

• (50 - 150%) better than any previous constraints!

$T+Pol \gg T-only$

The third shape $- \delta \dot{\phi}^2 (\partial \phi)^2 - is$ very correlated, so we don't plot it [but we don't detect it]

Smith+15, Planck 2015, Planck 2018, Philcox 25c

Results: Direction-Dependent Non-Gaussianity

Model: local effects with **angle-dependence**

 $\langle \zeta^4 \rangle \sim P_{\zeta}(\underline{k_{\text{short}}})P(\underline{k'_{\text{short}}})P_{\zeta}(\underline{k_{\text{long}}}) \times \text{AngleFunction}(\hat{\mathbf{k}}_{\text{short}}, \hat{\mathbf{k}'_{\text{short}}}, \hat{\mathbf{k}'_{\text{long}}})$

- Constrains models such as:
 - Solid Inflation (driven by triplet of vector fields)
 - Gauge Fields (coupled to inflation, e.g. $f(\phi)F\tilde{F}$)
 - **Parity-Violation** (*chiral couplings*)

Outcome: (Mostly) consistent with zero!

First constraints from data!

Results: Cosmological Collider

Model: *inflationary* **massive** and **spinning** particles

$$\langle \zeta^4 \rangle \sim P_{\zeta}(k_{\text{short}})P(k'_{\text{short}})P_{\zeta}(k_{\text{long}}) \times$$

$$\left(\frac{k_{\rm long}^2}{k_{\rm short}k_{\rm short}'}\right)^{3/2\pm i\sqrt{m}}$$

- Several regimes, including:
 - Light Fields (Complementary Series): $m_{\sigma} \lesssim 3H/2$
 - **Conformally Coupled** Fields: $m_{\sigma} = 3H/2$
 - **Heavy** Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$

Outcome: Consistent with zero!

• First constraints from data!

Results: Cosmological Collider

Model: *inflationary* **massive** and **spinning** particles

- Several regimes, including:
 - Light Fields (Complementary Series): $m_{\sigma} \lesssim 3H/2$
 - Conformally Coupled Fields: $m_{\sigma} = 3H/2$
 - Heavy Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$
- As expected, **light fields** are easiest to constrain since their trispectrum *diverges*
- Odd-spins are hard to constrain due to cancellations!

Philcox 25c, Moradinezhad+, Schmidt+

Results: Gravitational Lensing

Gravitational lensing also induces a **four-point** function:

$$T_{\rm CMB} \to T_{\rm CMB} + \nabla T \nabla \phi$$
$$\langle T_{\rm CMB}^4 \rangle \sim \langle T \nabla T \rangle^2 \langle \nabla \phi \nabla \phi \rangle$$

• The estimators are (almost) equivalent to the standard forms

(Including realization-dependent noise, N^0 bias, N^1 bias, but adding maskdependent normalization and optimal filtering)

- We detect *Planck* lensing at $43\sigma!$
 - This is consistent with the standard model

$$\langle \phi^2 \rangle / \langle \phi^2 \rangle_{\text{fiducial}} \sim C_L^{\phi\phi} / C_L^{\phi\phi,\text{fid}} = 0.9^{\circ}$$

• It's the **joint strongest** constraint yet!

$$^{7^2}\phi \sim \int$$
dark matter

79 ± 0.023

cf. Hu, Okamoto, Lewis, Challinor, ..., Carron+22, ACT+24, Philcox 25c

What's Next For the Trispectrum?

There are *many* ways to extend.

1. More **Data**

- scales!
- The polarization will be particularly useful and could benefit from delensing
- 2. More **Models**
 - Lighter particles? Heavier particles?
 - Collider physics beyond the collapsed limit?
 - Thermal baths? Higher-spin particles? Modified sound speeds? Fermions?
 - Scale-dependence? Isocurvature? Primordial magnetic fields?

• ACT, SPT, Simons Observatory, CMB-S4, CMB-HD will provide data down to **much** smaller

McCulloch+, Baumann+, Lee+, Moradinezhad+, Trivedi+, Jazayeri+, Salcedo+, ..., Philcox 25abc

The Future of Non-Gaussianity

- Future CMB experiments will improve bounds by $\leq 10 \times$
 - This is a two-dimensional field
 - We're running out of modes to look at!
 - Small-scales are hard

- What about galaxy surveys?
 - This is a three-dimensional field
 - Legacy surveys map a million galaxies [BOSS] lacksquare
 - New surveys map $\sim 100 \times$ more! [DESI, Euclid, Rubin, Roman, ...]

Density of galaxies, ρ_{gal}

Inflation from Galaxy Surveys

- Modern galaxy surveys map of the distribution of galaxies in three- \bullet dimensions: $\delta_g(\mathbf{x}, z)$
- This traces dark matter evolution and the initial conditions

• To extract inflationary information, we need a joint model of all effects:

 $\langle \delta_g \delta_g \delta_g \rangle \sim \text{Primordial Physics} + \text{Gravity} + \text{cross-terms}$

State-of-the-art method:

Effective Field Theory of Large Scale Structure (EFTofLSS)

Inflation from Galaxy Surveys

- Recent works have constrained:
 - Local three-point functions $f_{\rm NL}^{\rm loc}$ from additional light fields
 - Equilateral three-point functions $f_{\rm NL}^{\rm eq,orth}$ from cubic interactions in single-field inflation
 - Collider three-point functions from the exchange of massive scalar fields

• For now, the constraints are **much** worse than the CMB $(5 - 20 \times) -$ this will change soon!

 There's lot's more to explore, including the four-point function and the full collider scenario!

Cabass+, Philcox+, Chen+, d'Amico+, Assassi, Zaldarriaga, Senatore, ...

Summary

- Thanks to new developments in theory and analysis, we can now *directly* constrain inflationary four-point functions and the **cosmological collider**
- This probes 10¹³TeV-scale physics using lowenergy data!
- New data from the CMB and galaxy surveys will significantly enhance our knowledge of inflation!

arXiv 2502.06931 2502.05258 2502.04434 2407.08731 2404.01894 2204.01781 2201.07238

Contact: ohep2@cantab.ac.uk

