Measuring H₀ From Galaxy Surveys: With and Without the Sound Horizon

Oliver Philcox (Princeton)

Cosmology From Home 2020

Based on:

- Philcox, Ivanov, Simonovic, Zaldarriaga (2020, arXiv: <u>2002.04035</u>)
- Philcox, Sherwin, Farren, Baxter (2020, arXiv: 2008.08084)

Blake Sherwin

Mikhail Ivanov

Gerrit Farren

Marko Simonovic

Eric Baxter

Matias Zaldarriaga

Indirect H₀: No Longer Just the CMB

• Two types of measurements: Planck 2018 (Aghanim+18) CMB ACT DR4 + WMAP (Aiola+20) Indirect 1. Require a **cosmological model** Direct 2. • No model required! • e.g. distance ladders, strong lensing, ... • Historically **indirect** H₀ constraints are from the CMB SH0ES (2019) 64 66 68 70 72 74 76 $H_0 \,[\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}]$

Disclaimer: 1σ errors do not fully represent non-Gaussian posteriors.

Indirect H₀: No Longer Just the CMB

Two types of measurements:

1. Direct	CMB
 Require a cosmological model 	BOSS
2. Indirect	BAO
 No model required! e.g. distance ladders, strong lensing, 	BOSS FS
\odot Historically indirect H_0 constraints are from the CMB	Equality
 Large Scale Structure comparable to the CMB! 	

Disclaimer: 1σ errors do not fully represent non-Gaussian posteriors.

Two Scales in the Matter Power Spectrum

Two Scales in the Matter Power Spectrum

- 1. The Equality Scale: k_{eq}^{-1}
 - The **horizon** at radiation-matter equality ($z \sim 3600$)
 - Sets the **peak** and overall shape

2. <u>The Sound Horizon</u>: *r*_d

- The **sound horizon** at baryon drag ($z \sim 1100$)
- Sets the **BAO** frequency

These are **standard rulers**

1. H₀ From the Sound Horizon

BOSS Power Spectra

Philcox+20

Galaxy Surveys: Measuring BAO

• Recent surveys measure 3 parameters:

- 1. Radial Alcock-Paczynski parameter: α_{\parallel}
- 2. Tangential Alcock-Paczynski parameter: α_{\perp}
- 3. Ratio of quadrupole and monopole: $f\sigma_8$

These encode cosmology:

$$egin{array}{lll} lpha_{\parallel} & \propto & rac{1}{H(z)r_d} \ lpha_{\perp} & \propto & rac{D_A(z)}{r_d} \end{array}$$

To constrain H_0 we need to know r_d Fix from *Planck* or use priors from BBN

Galaxy Surveys: Measuring BAO

Recent surveys measure 3 parameters:

- 1. Radial Alcock-Paczynski parameter: α_{\parallel}
- 2. Tangential Alcock-Paczynski parameter: α_{\perp}
- 3. Ratio of quadrupole and monopole: $f\sigma_8$

These encode cosmology:

$$lpha_{\parallel} \propto rac{1}{H(z)r_d} \ lpha_{\perp} \propto rac{D_A(z)}{r_d}$$

To constrain H_0 we need to know r_d Fix from *Planck* or use priors from BBN

Galaxy Surveys: Beyond the BAO

 Can we constrain cosmological information from full shape of the unreconstructed power spectrum?

 Model with the Effective Field Theory of Large Scale Structure, [Ivanov+19,20; d'Amico+19] including:

- One-loop perturbation theory
- Non-linear bias
- Stochastic contributions (shot-noise)
- UV counterterms
- IR resummation

$$P_{g,\ell}(k) = P_{g,\ell}^{\text{tree}}(k) + P_{g,\ell}^{1-\text{loop}}(k) + \frac{P_{g,\ell}^{\text{noise}}(k)}{P_{g,\ell}^{\text{noise}}(k)} + \frac{P_{g,\ell}^{\text{ctr}}(k)}{P_{g,\ell}^{\text{ctr}}(k)}$$

Linear Theory 1-loop PT Shot-noise Counterterms
 This has been tested on huge volume simulations [Nishimichi+20]

Galaxy Surveys: Beyond the BAO

Including a BBN prior on ω_b

Ivanov+19

Galaxy Surveys: Bringing back the BAO

• What about the **reconstructed** spectrum?

- This is difficult to model: [Hikage+17,19, Chen+19]
 Broadband is distorted
 - Distortion depend on reconstruction schemes
 - Depends on modeling assumptions [Sherwin+19]

Galaxy Surveys: Bringing back the BAO

• What about the **reconstructed** spectrum?

- This is difficult to model: [Hikage+17,19, Chen+19]
 Broadband is distorted

 - Distortion depend on reconstruction schemes
 - Depends on modeling assumptions [Sherwin+19]

○ Solution:

- 1. Measure **BAO parameters** from **reconstructed** spectra
- 2. Combine with **full-shape** likelihood for **unreconstructed** spectra

• This allows **more information** to be extracted from BOSS!

Galaxy Surveys: Bringing back the BAO

Philcox+20

2. H₀ Without the Sound Horizon

Two Scales in the Matter Power Spectrum

1. The Equality Scale:
$$k_{eq}^{-1}$$

- The **horizon** at radiation-matter equality ($z \sim 3600$)
- Sets the **peak** and overall shape

- 2. The Sound Horizon: r_d
 - The **sound horizon** at baryon drag ($z \sim 1100$)
 - Sets the **BAO** frequency

These are standard rulers

The Equality Scale: A (New) Probe of HO?

 \circ The **equality scale** acts contains H_0 information

 $k_{\rm eq} \propto \Omega_{cb} H_0^2 T_{\rm CMB}^{-2}$

 \circ Measuring it in h Mpc⁻¹ units probes $\Omega_{cb}H_0$

 \circ Given a probe of Ω_{cb} (or Ω_m) we can **constrain** H_0 !

 \odot This is a measurement of H_0 at $z_{\rm eq} \sim 3600$, much before recombination at $z_d \sim 1100$

New physics at $z \sim 10^3$ should affect **BAO** and equality H_0 measurements differently

Baxter & Sherwin 2020, Hill+19,20

The Equality Scale: A (New) Probe of HO?

 \odot The **equality scale** was measured decades ago, through the **shape parameter** Γ [e.g. Percival+01]

 Baxter & Sherwin (2020) recently showed this could be measured from *Planck* lensing and Pantheon SNe, via

$$L_{\rm eq} \equiv k_{\rm eq} \chi_* \sim \Omega_m^{0.6} h$$

giving

 $H_0 = 73.5 \pm 5.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$

independent of sound horizon physics

• Can we do the same for galaxy surveys?

Extracting Equality

 \odot We can't see the equality scale directly in BOSS.

It can be probed from the power spectrum shape:

$$P_g(k > k_{\rm eq}) \approx b_1^2 A_s \left(c + \log \frac{k}{k_{\rm eq}}\right)^2 \left(\frac{k}{k_{\rm eq}}\right)^{n_s - 4}$$

 \circ This is helped by knowledge of $b_1^2 A_s$ from **loops** and **redshift-space distortions**

 \circ Adding information about Ω_m from **Pantheon** or **uncalibrated BAO** breaks the $\Omega_{cb} - H_0$ degeneracy

Ansatz: Analyzing the full-shape BOSS data without a restrictive prior on ω_b will measure H_0 from the equality scale

H₀ Constraints from Equality

O MCMC results*:

Dataset	H ₀ (mean \pm 1 σ) [km s ⁻¹ Mpc ⁻¹]
BOSS + Pantheon	$65.1^{+3.0}_{-5.4}$
BOSS + Uncalibrated BAO	$65.6^{+3.4}_{-5.5}$
BOSS + Pantheon + Planck Lensing	$70.6^{+3.7}_{-5.1}$

95% of the baseline **BOSS + Pantheon** posterior is **below** the SH0ES best-fit, even without the **sound horizon**!

* { $h, \omega_b, \omega_{cdm}, A_s, n_s, \sum m_v$ } + 28 nuisance parameters are varied in the likelihood

Philcox+20, Baxter & Sherwin (2020)

Sound-Horizon Independence

 \odot Test on mock data:

- 1. Matching BOSS DR12
- 2. With suppressed **BAO wiggles**
- 3. With 10x less baryons

 $_{\odot}$ No significant change to H_{0} constraints

 Information is **not** coming from the sound horizon!

Sound-Horizon Independence (II)

 Perform a Fisher forecast with an Eisenstein-Hu transfer function:

- 1. Emulating BOSS DR12
- 2. Marginalizing over r_d
- \circ No significant change to H₀ constraints

 Information is **not** coming from the sound horizon!

Cosmological Implications

 \odot **BAO Constraints:** Probe H_0 around $z \sim 1100$

• Equality Constraints: Probe H_0 around $z \sim 3600$

- \odot Discrepancy of H_0 measurements could indicate **new physics** around recombination
- \circ Consistency of H_0 measurements would make some **beyond-** Λ **CDM** solutions to the **Hubble tension** difficult

 \odot A simple forecast for $\ensuremath{\textbf{Euclid}}$ shows that

$$\sigma_{H_0} \sim 1.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

will soon be possible

Philcox+20

Conclusions

Any Questions?

Email: ohep2@cantab.ac.uk

Want to Read More?

- Philcox, Ivanov, Simonovic, Zaldarriaga (2020, arXiv: 2002.04035)
- Philcox, Sherwin, Farren, Baxter (2020, arXiv: 2008.08084)