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Practicalities
Further reading:


• Oliver's EFT Notes (see link) 

• Tobias Baldauf’s Notes 

• Daniel Baumann’s Notes 

and many others! 

Plan: 

• Today: what and why is Effective Field Theory 

• Tomorrow: how can we use this to model for galaxy surveys? 

• This will be theory-heavy so we’ll have a couple of breaks for some practical stuff!

3

Lecture Notes

Please ask questions!

https://tinyurl.com/philcox-eft-notes



The Big Picture
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The Big Picture — I
• Why is theory useful?


• Robust: theory is accurate up to its assumptions


• Cheap: no need for expensive N-body simulations 

• Flexible: easy to add new physical effects 


• Why is theory limited?


• Failure: Most theoretical models break-down on small scales


• Hard: Modeling higher-point correlations is technically challenging 


• Gaussian: Analysis requires a known (Gaussian) likelihood


• SBI can improve on theory, but only if the simulations are good enough!

5

Francois
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The Big Picture — II
• What observables do we have? 

• Galaxy surveys   

• Galaxy shapes 


• Weak lensing 


• How do we usually predict them? 

• Two-point functions: 


• Three-point functions: 


• Cross-correlations, fields, marked spectra, voids, reconstructions, PDFs, etc. 

• Actually measuring these statistics is a fun problem already!

→ δg(x, z), v(x, z)

→ Iij(x, z)

→ ρm(x, z), Iij(x, z)

P(k), ξ(r)

B(k1, k2), ζ(r1, r2)

6 Ivanov, Philcox

Observables

Statistics
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The Big Picture — III
• Assuming Gaussianity, we can form a likelihood for a 

statistic :


• Given a theory model , we can infer the underlying 
parameters 


• Note: there’s two options for treating the covariance:


• Compute from simulations or analytic theory


• Drop the Gaussianity assumption altogether [not needed 
here]


• The remainder of these lectures: derive !

X

X(θ)
θ

X(θ)

7

−2 log ℒ(θ | X̂) = [X̂−X(θ)] ⋅ cov−1
X ⋅ [X̂−X(θ)]

Observables

(Note: this is “full modeling” not ShapeFit)
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Modeling Basics
• To model the low-  galaxy distribution we need to model the Universe’s:


1. Initial Conditions:  

2. Composition:  

3. Evolution:  

4. Velocities: 


5. Galaxy-Dark Matter Connection: 


• First-step: predict the distribution of matter in real-space: 

z

As, ns, fNL, …

ωb, ωc, Mν

Ωm, Mν, w0, wa, H0

f(z)

b(z), …

ρ(x, z)

8

Galaxy Field

Primordial Field

Matter Field

Quijote: Villaescusa-Navarro



Standard Perturbation Theory



Oliver Philcox — COTB 2024

The Fluid Equations — I
• The late Universe is dominated by dark matter and baryons.


• For a collisionless system, neglecting neutrinos and baryonic effects, the dark matter-baryon “fluid” must obey:


1. Conservation of mass:        [Continuity] 

(where  are fluid density, velocity, potential, , and .  is the stress tensor.)


·ρ + ∇ ⋅ (ρv) = 0

ρ, v, ϕ ℋ = ·a/a ·x ≡ ∂x/∂τ σ = σij

10 Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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The Fluid Equations — I
• The late Universe is dominated by dark matter and baryons.


• For a collisionless system, neglecting neutrinos and baryonic effects, the dark matter-baryon “fluid” must obey:


1. Conservation of mass:        [Continuity] 

2. Conservation of momentum:        [Euler] 

(where  are fluid density, velocity, potential, , and .  is the stress tensor.)


·ρ + ∇ ⋅ (ρv) = 0

·v + v ⋅ ∇v = − ℋv − ∇ϕ −
1
ρ

∇(ρσ)

ρ, v, ϕ ℋ = ·a/a ·x ≡ ∂x/∂τ σ = σij

11

Collisionless!

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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The Fluid Equations — I
• The late Universe is dominated by dark matter and baryons.


• For a collisionless system, neglecting neutrinos and baryonic effects, the dark matter-baryon “fluid” must obey:


1. Conservation of mass:        [Continuity] 

2. Conservation of momentum:        [Euler] 

3. Conservation of energy:        [Poisson/Einstein]


(where  are fluid density, velocity, potential, , and .  is the stress tensor.)


• These are the (Eulerian) ideal fluid = Collisionless Boltzmann Moments = Vlasov equations


• They are ODEs specifying the evolution (with ICs from inflation) — the same as those used in N-body codes!

·ρ + ∇ ⋅ (ρv) = 0

·v + v ⋅ ∇v = − ℋv − ∇ϕ −
1
ρ

∇(ρσ)

∇2ϕ = 4πGδρ

ρ, v, ϕ ℋ = ·a/a ·x ≡ ∂x/∂τ σ = σij

12

Collisionless!

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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The Fluid Equations — II
• There are many ways to extend these equations. These include


• Dark-matter — dark-energy interactions


• Dark-matter — baryon scattering


• Fifth forces


• Isocurvature modes


• Radiation physics


• Warm dark matter


• The basic implementation assumes an ideal fluid with  [we’ll return to this later]σij = 0

13

Continuity:   
Euler:        
Poisson: : 

·ρ + ∇ ⋅ (ρv) = 0
·v + v ⋅ ∇v = − ℋv − ∇ϕ

∇2ϕ = 4πGδρ

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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Linearized Solutions — I
• Define a perturbation variable:  which is (hopefully) small


• Compute fluid equations at linear order:


• Continuity: 


• Euler:       


• Poisson: : 


• To solve, we introduce the velocity divergence  and vorticity : 


• This is a second order ODE governing the time-dependence of 


• At linear order, the vorticity decays quickly  so we can ignore it!

δ = (ρ − ρ̄)/ρ̄

·δ1 + ∇ ⋅ v1 = 0

·v1 = − ℋv1 − ∇ϕ1

∇2ϕ1 = 3
2 ℋ2Ωmδ1

θ = ∇ ⋅ v ω = ∇ × v

δ1

(ω1 ∼ a−1)

14

··δ1 + ℋ ·δ1−
3
2 ℋ2Ωmδ1 = 0, θ1 = − ·δ1, ·ω1 + ℋω1 = 0

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 

Continuity:   
Euler:        
Poisson: : 

·δ + ∇ ⋅ [(1 + δ)v)] = 0
·v + v ⋅ ∇v = − ℋv − ∇ϕ

∇2ϕ = 3
2 ℋ2Ωmδ



Oliver Philcox — COTB 2024

Linearized Solutions — II

• We can assume a separable solution with spatial parts set by the initial 
conditions:


specializing to the growing mode solution (since the decaying mode quickly 
becomes negligible, )


• The growth rate and its derivative  are determined by 
the ODE 


• In an Einstein de Sitter Universe:  [since ]

D+ ∼ a, D− ∼ a−3/2

f(z) = d log D/d log a

D(z) = a(z) Ωm = 1, a ∼ τ2

15

θ1 = − ·δ1,
··δ1 + ℋ ·δ1−

3
2 ℋ2Ωmδ1 = 0

δ1(x, z) = D(z)δL(x), θ1(x, z) = − ℋ(z)f(z)D(z)δL(x)

··D + ℋ ·D− 3
2 ℋ2ΩmD = 0

Good agreement until  kicks in!Λ

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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Linearized Solutions — III

• From the density fields we can get the statistics:


• We relate the late-time statistics to the growth rate (  evolution 
parameters) and the primordial correlators (  inflation)


•  is also given by CAMB/CLASS, so we haven’t done anything 
new yet…

⇒
⇒

P11

16

P11(k, z) = ⟨δ1(k, z)δ1(−k, z)⟩ = D2(z)PL(k)

B111(k1, k2, z) = ⟨δ1(k1, z)δ1(k2, z)δ1(−k1 − k2, z)⟩ = D3(z)BL(k1, k2, z) = 0

δ1(k, z) = D(z)δL(k), θ1(k, z) = − ℋ(z)f(z)D(z)δL(k)

Comparison to Quijote simulations 

 does well on large scales only!P11

Bernardeau, Gaztanaga, Fry, Scoccimarro, Villaescusa-Navarro, … 

( )z = 0



Oliver Philcox — COTB 2024

Standard Perturbation Theory — I
• We can proceed by solving the equations iteratively


• Here, we will ignore the vorticity since:


1. Primordial vorticity decays as 


2. It is sourced only from small scales and by 


• The resulting equations are a little messy:


• To solve them, we expand order-by-order in , assuming  is small!

a−1

σij

δ, θ δ1

17

Continuity:   
Euler:        
Poisson: : 

·δ + ∇ ⋅ [(1 + δ)v)] = 0
·v + v ⋅ ∇v = − ℋv − ∇ϕ

∇2ϕ = 3
2 ℋ2Ωmδ

·δ + θ = − δθ − (∂iδ)(∂i ∇−2θ)
·θ + ℋθ+ 3

2 ℋ2Ωmδ = − (∂i∂j ∇−2θ)2 − (∂jθ)(∂j ∇−2θ)

δ(x, z) =
∞

∑
n=1

δn(x, z), θ(x, z) =
∞

∑
n=1

θn(x, z) δn, θn = 𝒪[(δ1)n]

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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Standard Perturbation Theory — II
• At order :


• This is a recursive series: higher-order terms are generated by lower-order on the RHS — it is a Taylor series in !


• Insert separable ansatzes for :


We usually assume  which is true in Einstein-de-Sitter and an excellent approximation in CDM.


• All of the physics dependence enters in the kernels 

n

k/kNL

δn, θn

Dn(z) = D′ n(z) = Dn(z) Λ

Fn, Gn

18

·δn + θn = −
n−1

∑
m=1

[δmθn−m − (∂iδm)(∂i ∇−2θn−m)]
·θn + ℋθn+

3
2 ℋ2Ωmδn = −

n−1

∑
m=1

[(∂i∂j ∇−2θm)(∂i∂j ∇−2θn−m) + (∂jθm)(∂j ∇−2θn−m)]

δn(k, z) = Dn(z)∫
dp1

(2π)3
⋯

dpn

(2π)3
Fn(p1, ⋯, pn)δL(p1)⋯δL(pn)δD(p1 + ⋯ + pn − k)

θn(k, z) = − ℋ(z)f(z)D′ n(z)∫
dp1

(2π)3
⋯

dpn

(2π)3
Gn(p1, ⋯, pn)δL(p1)⋯δL(pn)δD(p1 + ⋯ + pn − k)

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 



Oliver Philcox — COTB 2024

Standard Perturbation Theory — III
• Kernel recursion relations are found by inserting the ansatzes into the fluid equations:


• These are just simple functions of the momenta / wavenumbers e.g.,


• This is it; we can now compute standard perturbation theory to any order!

19

(up to vorticity terms, stress terms,  baryon effects, etc. etc.)
Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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Standard Perturbation Theory — IV
• Let’s compute the power spectrum at next-to-leading order!


• Linear theory generates  terms, so next-to-leading needs  [  vanishes, since  for odd ]


• The higher-order involve one loop integral:


• Note that the integrals involve all modes, not just those at large-scales (small )

𝒪(2) 𝒪(4) 𝒪(3) ⟨δn
L⟩ = 0 n

p

20

δ(k, z) = D(z)δL(k)+D2(z)∫p
F2(p, k − p)δL(p)δL(k − p)+D3(z)∫p,p′ 

F3(p, p′ , k − p − p′ )δL(p)δL(p′ )δL(k − p − p′ )⋯

PSPT(k, z) = P11(k, z) + P22(k, z) + 2P13(k, z) + ⋯

P22(k, z) = D4(z)∫p,p′ 

F2(p, k − p)F2(p′ , − k − p′ )⟨δL(p)δL(p′ )δL(k − p)δL(k − p′ )⟩ = 2D4(z)∫p
F2(p, k − p)2PL(p)PL( |k − p)

P13(k, z) = D4(z)∫p,p′ 

F3(p, p′ , k − p − p′ )⟨δL(p)δL(p′ )δL(k − p − p′ )δL(−k)⟩ = 3D4(z)∫p
F3(p, − p, k)PL(p)PL(k)

Bernardeau, Gaztanaga, Fry, Scoccimarro, … 
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Standard Perturbation Theory — V
• We can compute the bispectrum similarly!


• This is produced only by non-linear physics, but starts at tree-level (no loop integrals!)


• It is straightforward to extend to higher-loops (capturing more small-scale physics) and higher-order statistics


• However, the computation gets expensive! 


• loop requires dimensional integration for each bin of interest


• There are efficient numerical schemes for 1-loop [FFTLog, COBRA, Propagators] but higher-order is hard!

n− (3n − 1)−

21

BSPT(k1, k2, z) = B211(k1, k2, z) + ⋯

B211(k1, k2, z) = D4(z)∫p
F2(p, k1 − p)δL(p)δL(k1 − p)δL(k2)δL(−k1 − k2) + 2 perm. = 2D4(z)F2(k1, k2)PL(k1)PL(k2) + 2 perm.

Bernardeau, Gaztanaga, Fry, Scoccimarro, Simonovic, Anastasiou, Braganca, Senatore, Zheng, Zaldarriaga, McEwen, Fang, … 



Oliver Philcox — COTB 2024

Standard Perturbation Theory — VI
• Let’s compare the results to data.


• For this, we can rewrite the 1-loop results as low-dimensional integrals:

22

P22(k, z) =
k3

2π2
D4(z)∫

∞

0
r2dr∫

1

−1
dμ ( 7μ + r(3 − 10μ2)

14r(1 + r2 − 2rμ) )
2

PL (k 1 + r2 − 2rμ) PL (kr)

2P13(k, z) =
k3

252(2π)2
PL(k)D4(z)∫

∞

0
r2dr [ 12

r4
−

158
r2

+ 100 − 42r2 +
3
r5

(7r2 + 2)(r2 − 1)3log
r + 1
r − 1 ] PL(kr)

 and  almost cancel!P22 P13

Bernardeau, Gaztanaga, Fry, Scoccimarro, Baldauf, Villaescusa-Navarro…
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Standard Perturbation Theory — VI
• Let’s compare the results to data.


• For this, we can rewrite the 1-loop results as low-dimensional integrals:

23

P22(k, z) =
k3

2π2
D4(z)∫

∞

0
r2dr∫

1

−1
dμ ( 7μ + r(3 − 10μ2)

14r(1 + r2 − 2rμ) )
2

PL (k 1 + r2 − 2rμ) PL (kr)

2P13(k, z) =
k3

252(2π)2
PL(k)D4(z)∫

∞

0
r2dr [ 12

r4
−

158
r2

+ 100 − 42r2 +
3
r5

(7r2 + 2)(r2 − 1)3log
r + 1
r − 1 ] PL(kr)

 and  almost cancel!P22 P13

1-loop is no better than linear theory!!

Bernardeau, Gaztanaga, Fry, Scoccimarro, Baldauf, Villaescusa-Navarro…
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The Failure of SPT — I
• What went wrong?


1. SPT does not give the right answer


• Adding the 1-loop corrections does not improve the fit to 
simulations!


• The fit is not improved with the 2-loop corrections either!


• (Many bells and whistles have been added to try and fix this, e.g. 
RPT, GRPT, etc.)


2. SPT is not general


• The loop integrals can be divergent. Let’s set . 


• The loop integrals converge in the UV ( ) only for  


• The loop integrals converge in the IR ( ) only for  

P(k) = kn

k ≪ p n < − 1

k ≫ p n > − 3

24

The theory blows up for many choices of !PL(k)

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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The Failure of SPT — II
• What went wrong?


3. The expansion is not well-defined! 

• The fluid equations expand in the small-parameter  

•   can be arbitrarily large!


4. We are integrating over UV modes in the non-linear regime! 

• The theory is not well controlled!


5. We have a assumed an ideal fluid


• Is this valid on small scales??

δ

rms(δ) ≡ σ

25

P13(k, z) = 3D4(z)PL(k)∫
∞ dp

(2π)3
F3(p, − p, k)PL(p)

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 



Effective Field Theory

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg, Simonovic, Ivanov, Chen, White, Philcox, d’Amico, 

Zhang, Donath, Colas, Vlah, de Belsunce, Mirbabayi, Baldauf, Foreman, Angulo, Perko, Green, Lewandowski, Aviles, … 



Oliver Philcox — COTB 2024

Introducing the Effective Field Theory
• SPT fails since it solves the wrong equations expanding in the wrong variable


• How do we fix this?


1. Work with the non-ideal fluid equations (keeping )


2. Expand in terms of the smoothed density, . Define  to coarse-grain the theory.


• This cuts off any contributions from  making the theory well-controlled!


• Let’s return to the fluid equations, including the stress, :


• The next step is the smooth the equations, so we have equations for 

σij

δΛ δΛ(k, z) = WΛ(k)δ(k, z)

k > Λ ∼ kNL

τij = ρσij

δΛ, vΛ, ϕΛ

27

·δ + ∇ ⋅ [(1 + δ)v] = 0
·v + ℋv + v ⋅ ∇v = − ∇ϕ −

1
ρ

∇τ

∇2ϕ = 3
2 ℋ2Ωmδ

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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Matter Effective Field Theory — II
• Smoothing is easy to apply to linear terms: . We find:


• This is identical to the usual fluid equations, except for the terms in red


• Smoothing the product of two fields isn’t equivalent to smoothing each: 


• In other words: the product of small-scale features can give rise to large-scale behavior! 

• We can collect these small-scale additions into a new stress-tensor 

δ → δΛ, ϕ → ϕΛ, …

[XY]Λ ≠ XΛYΛ

τUV
Λ

28

·δΛ + ∇ ⋅ [(1 + δΛ)vΛ] = 0
·vΛ + ℋvΛ+

1
ρΛ

[ρv ⋅ ∇v]Λ = −
1
ρΛ

[ρ∇ϕ]Λ−
1
ρΛ

∇τΛ

∇2ϕΛ = 3
2 ℋ2ΩmδΛ

Technical note: we smooth  instead of , defining ρv v vΛ = [ρv]Λ /ρΛ

·vΛ + ℋvΛ + vΛ ⋅ ∇vΛ = − ∇ϕΛ −
1
ρΛ

∇(τΛ+τUV
Λ )

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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Matter Effective Field Theory — III
• The new stress tensor collects up the back-reaction of small onto large scales: 


• We now have a set of equations for the smoothed DM+baryon fluid! 


• These are identical to the non-ideal fluid equations!


• Smoothing generates a stress-tensor 


• The new and true stress-tensors are indistinguishable!


• An analogy:


• Viscosity in fluid flow  small scales (atomic motions) impact large scales (flow) via a stress tensor (viscosity)

τUV
NL

→

29

Continuity: 
   

Euler: 

  

Poisson:  
 

·δΛ + ∇ ⋅ [(1 + δΛ)vΛ] = 0

·vΛ + ℋvΛ + vΛ ⋅ ∇vΛ = − ∇ϕΛ −
1
ρΛ

∇(τΛ+τUV
Λ )

∇2ϕΛ = 3
2 ℋ2ΩmδΛ

∇τUV
Λ = ([ρ∇ϕ]Λ − ρΛ ∇ϕΛ) + ([ρv ⋅ ∇v]Λ − ρΛvΛ ⋅ ∇vΛ)

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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Matter Effective Field Theory — IV

• To use the theory, we need to model the stress tensor 


• This is sourced by small-scale physics we can’t predict from our theory!


• Symmetry to the rescue! Expand in all relevant quantities, respecting symmetry, i.e.  

• This is an expansion in long-wavelength fields and counterterms. 


• The counterterms are dependent constants encapsulating the small-scale physics we left behind


• The contributions to  look just like the usual non-ideal fluid terms 

τUV
Λ

τUV
Λ,ij = Fij(δΛ, vΛ, ∂)

Λ−

τUV
Λ τΛ

30

∇τUV
Λ = ([ρ∇ϕ]Λ − ρΛ ∇ϕΛ) + ([ρv ⋅ ∇v]Λ − ρΛvΛ ⋅ ∇vΛ)

τUV
Λ,ij = [p(Λ)+ρ̄c2

s (Λ)δΛ] δK
ij − ρ̄c2

v (Λ)[∂ivΛ,j − ∂jvΛ,i]+⋯

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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Matter Effective Field Theory — V
• Let’s put our long-wavelength stress tensor into the fluid equations.


• The only change (at leading order) is a new derivative term  in the Euler equation!


• The equations can be solved perturbatively in  (which is now small if ). The solution has two parts:


where the counterterm contributions  come from the stress-tensor = back reaction of short-scale physics.


• At leading order:     — all other terms match SPT!

c2
s (Λ)∇δΛ

δΛ Λ < kNL

δct
n

δct
3 (k, z) = −c2

s (Λ, z)k2δL(k)

31

·δΛ + ∇ ⋅ [(1 + δΛ)vΛ] = 0
·vΛ + ℋvΛ + vΛ ⋅ ∇vΛ = − ∇ϕΛ −

1
ρΛ

∇τΛ−c2
s (Λ)∇δΛ + ⋯

∇2ϕΛ = 3
2 ℋ2ΩmδΛ

δ(k, z) = ∑
n

[δn(k, z; Λ)+δct
n (k, z; Λ)]

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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Matter Effective Field Theory — VI
• The solution for the power spectrum is as follows:


• The first three terms match SPT, except we know integrate only up to  (due to the smoothing).


• What is the value of the counterterm ?


• We don’t know! [Cannot be predicted perturbatively, cf. viscosity]


• Must either match to simulations or fit from data 

Λ

c2
s (Λ)

32

P(k, z) = P11(k, z) + P22(k, z, Λ) + 2P13(k, z, Λ)−2c2
s (Λ, z)k2PL(k)+⋯

New EFTofLSS term!

P22(k, z, Λ) = 2D4(z)∫|p|≤Λ
F2(p, k − p)2PL(p)PL( |k − p)

P13(k, z, Λ) = 3D4(z)∫|p|≤Λ
F3(p, − p, k)PL(p)PL(k)

( )k < Λ

EFT gives a model for the matter 
power spectrum at 1-loop depending 

on one physical (yet unknown) 
parameter!

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg… 
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TIME FOR A BREAK!
• How does this work in practice?

33

Build your own 1-loop theory here!

https://tinyurl.com/myfirstpt

SPT = ???


EFT = ???
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TIME FOR A BREAK!
• The solution:

34

1-loop EFT fits much better than 1-loop SPT!

https://tinyurl.com/myfirstpt-solution
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Renormalization — I
• Both the 1-loop integrals and the counterterms explicitly depend on the cut-off scale .


• However, this is not a physical parameter — we introduced it only to make perturbation theory easier!


• Let’s see how  changes when we shift  a little bit (restricting to ):


• This is exactly the same form as the change in the counterterm:


• A small change in  leads to opposite changes in the loop integrals and the counterterms  

• We can play a similar game for : this changes as , matching a (neglected) stochastic counterterm. 

Λ

P13 Λ k ≪ Λ

Λ

P22 k4

35

P13(k, z, Λ′ ) − P13(k, z, Λ) = −
61
210

D4(z)k2PL(k)∫
Λ′ 

Λ

p2dp
6π2

PL(p)
p2

= k2PL(k)[ f(Λ′ , z) − f(Λ, z)]

Pct(k, z, Λ′ ) − Pct(k, z, Λ) = − 2k2PL(k)[c2
s (Λ′ , z) − c2

s (Λ, z)]

Technical note: this is on-shell Wilson renormalization 

2P13(k, z, Λ) + Pct(k, z, Λ) = 2P13(k, z, Λ′ ) + Pct(k, z, Λ′ )

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg, Schmidt… 
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Renormalization — II
• This is the essence of renormalization: due to the counterterms, the total power spectrum  does not 

depend on the cut-off 


• In other words, we capture the UV divergences of the theory (modes with ) via a set of free counterterm 
coefficients 


• This is an equivalent (and often easier) way to introduce the counterterms 


• Just check that the cut-off dependence of the loops is captured by a counterterm contribution


• In practice, the counterterms have two contributions: 


• The physical part (a true sound-speed, for example) is indistinguishable from the renormalization piece.

PEFT(k, z)
Λ

p > kNL

c2
s (Λ) = c2

s,UV(Λ) + c2
s,phys

36Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg, Schmidt… 
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Matter EFT Round-Up
• Effective Field Theory can be extended to higher-loops and higher-orders 


• All we need to do is:


a. Calculate the SPT diagrams, integrating up to 


b. Add all the relevant counterterms (from  or cut-off dependence)


• For matter, it has been computed for:


• : 1-loop, 2-loop, 3-loop


• : 1-loop, 2-loop


• : 1-loop


• Eventually the loops are expensive, the dimensionality explodes, and the number of counterterms is large!

Λ

τUV
ij

P(k)

B(k1, k2, k3)

T(k1, k2, k3, k4, K)

37

2-loop EFT is great for !k < 0.3

Senatore, Baumann, Nicolis, Zaldarriaga, McDonald, Carrasco, Hertzberg, Schmidt… 
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Where Did We Get To Last Time?

39

Galaxy FieldPrimordial Field Matter Field

Last Time: Modeling Matter 

This Time: Modeling Galaxies Lecture Notes
https://tinyurl.com/philcox-eft-notes
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Summary of the EFT of LSS
• EFT is a perturbative solution of the non-ideal fluid 

equations


• A controlled Taylor series in 


• Agnostic to UV physics


• Includes all effects relevant to symmetry (including baryonic 
effects!)


• It is maximally conservative theory  we’d do better if we 
knew the counterterms!

k/kNL, kRhalo, …

⇒

40



Lagrangian Perturbation Theory

Senatore, Vlah, White, Kokron, Zel’dovich, Chen, Reid, Carlson, Fry, Bertschinger, Zaldarriaga, Matsubara, …  
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Lagrangian Perturbation Theory — I
• We can describe a fluid in two frames:


• Observer Frame: Track external properties 


•  Fluid Frame: Track fluid displacement:  from initial position 


• The Newtonian geodesic equation gives:


for an ideal fluid, as before


• To relate to density, we can use conservation of matter: 

ρ(x, t), v(x, t)

x(q, z) = q + Ψ(q, z) q

42

··Ψ + ℋ ·Ψ = − ∇xϕ(q + Ψ), ∇2
xϕ = 3

2 ℋ2Ωmδ

[1 + δ(x, z)]dx = dq ⇒ δ(k, z) = ∫ dq eik⋅q (eik⋅Ψ(q,z) − 1)

Senatore, Vlah, White, Kokron, Zel’dovich, Chen, Reid, Carlson, Fry, Bertschinger, Zaldarriaga, Matsubara, …  
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Lagrangian Perturbation Theory — II

• At linear order:


• Inserting the blue into the red gives:


• This matches the Eulerian expression (as expected)!


• To obtain the Zel’dovich solution we solve the red equation for  but do not expand the exponential:Ψ1

43

··Ψ1 + ℋ ·Ψ1 = − 3
2 ℋ2Ωm ∇∇−2δ1, δ1(k, z) = ik ⋅ Ψ1(k)

··Ψ + ℋ ·Ψ = − ∇xϕ(q + Ψ), ∇2
xϕ = 3

2 ℋ2Ωmδ, δ(k, z) = ∫ dq eik⋅q (eik⋅Ψ(q,z) − 1)

··δ1 + ℋ ·δ1−
3
2 ℋ2Ωmδ1 = 0

Ψ1(k, z) = D(z)
ik
k2

δL(k), δZel(k, z) = ∫ dq eik⋅q (e−D(z) ∫p
k ⋅ p
p2 δL(p) − 1)

Senatore, Vlah, White, Kokron, Zel’dovich, Chen, Reid, Carlson, Fry, Bertschinger, Zaldarriaga, Matsubara, …  
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Lagrangian Perturbation Theory — III
• We can expand perturbatively as before:


• This is analogous to SPT but with new kernels, e.g.,  


• To compute correlators we use the expression for , e.g., for Zel’dovich:


• This is more painful to simplify, but we can use the cumulant theorem: . We eventually find:


• Higher orders are computed similarly, but we expand them from the exponential

L1(k) = k/k2, L2(p1, p2) =
3
7

p12

p2
12 [1 −

(p1 ⋅ p2)2

p2
1 p2

2 ]
δ(k, z)

⟨eiX⟩ = e−σ2
X/2

44

Ψ(q, z) =
∞

∑
n=1

Ψn(q, z), Ψn(q, z) = Dn(z)
i

n! ∫p1⋯pn

Ln(p1, ⋯, pn)δL(p1)⋯δL(pn)δD(p1 + ⋯ + pn − k)

PZel(k, z) = ∫ dq1dq2eik⋅(q1−q2) ⟨(eik⋅Ψ1(q1,z) − 1) (e−ik⋅Ψ1(q2,z) − 1)⟩

PZel(k, z) = ∫ dq eik⋅q exp (−D2(z)k2 ∫
p2dp
2π2

PL(p)
p2 [ 1

3
(1 − j0(pq) − j2(pq)) + (k̂ ⋅ q̂)2 j2(pq)])

Senatore, Vlah, White, Kokron, Zel’dovich, Chen, Reid, Carlson, Fry, Bertschinger, Zaldarriaga, Matsubara, …  



Oliver Philcox — COTB 2024

Lagrangian Perturbation Theory — IV
• As for Eulerian PT, the basic formulation of LPT is pathological and inaccurate! 

• We need to coarse-grain the theory via: 


• This leads to modifications of the equation of motion:


• The acceleration term comes from small-scale fluctuations and depends on 


• We can expand it using symmetry as before: 


• This has the same effect as for Eulerian PT: 


• As before, it ensures that the theory is cut-off independent!

Ψ → ΨΛ, ϕ → ϕΛ

Λ

aΛ = a0(z) + a1(z)∇xδΛ(q + ΨΛ(q, z), z) + ⋯

PEFT(k, z) = PLPT(k, z, Λ)[1 − k2α(Λ, z)] + ⋯

45

··ΨΛ(q, z) + ℋ(z) ·ΨΛ(q, z) = − ∇xϕΛ(q + ΨΛ(q, z), z)+aΛ(q, ΨΛ, z)

(i.e. isotropy, homogeneity, equivalence)

Senatore, Vlah, White, Chen, Zaldarriaga, …  
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Infrared Resummation — I 
• There’s a slight error in our perturbative treatments!


• In Eulerian PT, we essentially expand the displacement exponential 


• However, the exponent isn’t necessarily small!


• On large-scales, this is the distance a particle moves since inflation 
— it is not small!


• These bulk flows smooth out any sharp features in the spectrum!

46

δΛ(k, z) = ∫ dq eik⋅q (eik⋅ΨΛ − 1) ≈ ∫ dq eik⋅q (ikiΨi
Λ− 1

2 kikjΨi
ΛΨj

Λ + ⋯)

1
3

⟨Ψ ⋅ Ψ*⟩Zel =
D2(z)
6π2 ∫

p2dp
2π2

PL(p)
p2

≈ (20 Mpc)2

Technically, there is a second dimensionless parameter in the problem that we ignored!
Zaldarriaga, Senatore, Blas, Ivanov, Sibiryakov, Baldauf… 

No flows | With flows
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Infrared Resummation — II 
• Note that this doesn’t affect smooth features due to mass and 

momentum conservation!


• Solution: do not Taylor expand the long-modes! 


• This is technical. At tree-level, we find:


where only the wiggly pieces  are damped!


• The result: EFT matches the data!

Pw

47

Linear, Loop, Resummed

PIR(k, z) = Pnw
L (k, z) + e−k2Σ2(z)Pw

L (k, z)

Notes: we can also do this in LPT and for higher-orders Zaldarriaga, Senatore, Blas, Ivanov, Sibiryakov, Baldauf… 

(This is formalized in Time-Sliced Perturbation Theory)



Galaxy Bias

Schmidt, Desjaques, Senatore, McDonald, Zaldarriaga, Ivanov, Philcox, Chen, d’Amico, Zhang, Kokron, Assassi, Simonovic…
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Galaxy Bias — I
• We know how to predict the dark matter (+ baryon) field  


• Our observable is the galaxy overdensity!


• The EFT approach: 

•  must be a function of local variables, e.g., 


• Expand  perturbatively in all possible operators 


• Symmetries: translation invariance, rotation invariance, Galilean invariance


• At lowest order:   for linear bias 

δ(x, z)

δg(x, z) δ(x, z), v(x, z), ∇δ(x, z), sij(x, z), ⋯

δg

δg = b1δ + ⋯ b1

49

(can’t have less than two  derivatives!)ϕ

ng(x, z) = n̄g(z)[1 + δg(x, z)]

Galaxy Field

Matter Field

(integrated over a light cone)

Schmidt, Desjaques…
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Galaxy Bias — II
• At third-order, many more terms are possible, including the tidal field 


• This is a Taylor expansion in !


• There are two pieces:


• Physical operators — which fields do  depend on?  

• Bias coefficients —  how does  depend on each field?


• All of the fun galaxy-formation physics is encoded in the biases: 

sij ∼ ∂i∂j ∇−2δ

kRhalo

δg

δg

{b1, b2, bs2, b∇2δ, ⋯}

50

δg = b1δ +
b2

2
δ2 + bs2sijsij + b∇2δ ∇2δ + ⋯

Galaxy Field

Matter Field

Schmidt, Desjaques…
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Galaxy Bias — III
• In the EFT language, we are expanding in smoothed fields, e.g., . 


• Small-scale physics generates new terms 


• These come from renormalization of non-linear pieces, e.g., 


• Unlike for matter, they don’t have to conserve mass and momentum! 


• At leading-order we find the stochastic contribution:


•   


• This is (scale-dependent) shot-noise!

δΛ

[δ2]Λ ≠ δ2
Λ

⟨ϵ(k, z)ϵ(−k, z)⟩ = Pϵ(k, z) = a0 + a2k2 + a4k4 + ⋯

51

Galaxy Field

Matter Field
δg(x, z) ⊃ ϵ(x, z) + ⋯

(For matter, this term looks like )Pϵ ∼ k4

Schmidt, Desjaques, Assassi, Senatore, Zaldarriaga…
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Galaxy Bias — IV
• Let’s combine everything together. To model the power spectrum at one-loop, we’ll need:


• The tree-level power spectrum is given by :


• At higher-order, we will need loop integrals and perturbative expansions…

Pgg(k, z) ≡ ⟨ |δg(k, z) |2 ⟩

52

δg = b1δ +
b2

2
δ2 + bs2sijsij + b∇2δ ∇2δ + ϵ + ⋯

Deterministic Stochastic

Ptree
gg (k, z) = D2(z)b2

1(z)[Pnw
L (k) + e−k2Σ2(z)Pw

L (k)] + Pshot

IR-resummed spectra StochasticityBias

Schmidt, Desjaques…
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Galaxy Bias — V
• We can expand  directly in terms of  as in matter PT!


• The power spectra look exactly the same as before, just with  instead of !


• We can similarly compute bispectra. At tree-level:

δg δL

Kn Fn

53

δg,n(k, z) = Dn(z)∫
dp1

(2π)3
⋯

dpn

(2π)3
Kn(p1, ⋯, pn; z)δL(p1)⋯δL(pn)δD(p1 + ⋯ + pn − k)

New kernels: now depend on biases!

P22(k, z) = 2D4(z)∫p
|K2(p, k − p; z) |2 PL(p)PL( |k − p) P13(k, z) = 3D4(z)∫p

K1(z)K3(p, − p, k; z)PL(p)PL(k)

(Note: we need to add IR-resummation and UV cut-offs in practice!)

B211(k1, k2, z) = [2D4(z)K1(z)K1(z)K2(k1, k2; z)PL(k1)PL(k2)+D2(z)Pϵ(z)PL(k) + Bϵ(z)] + 2 perm.
(Note: stochasticity more complex here!)

Schmidt, Desjaques…
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Redshift-Space Distortions — I
• Finally, we observe the galaxy field in redshift space 

• Observed position is related to true position by radial velocity 

• This remaps the galaxy density:


• In Fourier-space:

55

s = x +
1

ℋ(z)
v∥

δg(x) → δg,s(s) = δg(x+v∥/ℋ(z))

δg,s(k) = ∫ dx eik⋅x {[(1 + δg(x)]eik⋅v∥/ℋ(z)−1}

(  )v∥ = (v ⋅ ̂z) ̂z

Fonseca de la Bella, Kaiser, Peebles, …
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Redshift-Space Distortions — II

• To solve, we now Taylor expand in  as well as !


• At leading order: 


• Remembering , , we get the Kaiser formula:


• Of course, we can go to arbitrary higher orders!

v∥ δ

δg = b1δ v(k, z) = ik/k2θ(k, z)

56

δg,s(k) = ∫ dx eik⋅x {[(1 + δg(x)]eik⋅v∥/ℋ(z)−1}

δg,s(k, z) = δg(k, z)+
i

ℋ(z)
k ⋅ v∥(k, z)

δg,s(k, z) = [b1(z)+f(z)μ2] D(z)δL(k)

Fonseca de la Bella, Kaiser, Peebles, …

μ = k̂ ⋅ ̂z (line of sight angle)
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Redshift-Space Distortions — III

• The result: we get new kernels relating  to the linear power spectrum


• Of course, we need to be careful about small-scales 


• Small-scale velocities change these expressions:  


• This gives new counterterms which depend on direction 


• 


• This is the fingers-of-God effect

δg,s

[v2
∥]Λ → v2

∥,Λ + short scales

δg,s(k, z) ⊃ c(z)D(z)k2μ2δL(k, z) + ⋯

57

δg,s(k) = ∫ dx eik⋅x {[(1 + δg(x)]eik⋅v∥/ℋ(z)−1}

δg,s,n(k, z) = Dn(z)∫
dp1

(2π)3
⋯

dpn

(2π)3
Zn(p1, ⋯, pn; z)δL(p1)⋯δL(pn)δD(p1 + ⋯ + pn − k)

New kernels: now depend on biases and !f(z)

Fingers of God!

Fonseca de la Bella, Kaiser, Peebles, Senatore, Zaldarriaga, …
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Redshift-Space Distortions — IV
• We can form power spectra as before. At tree-level (Kaiser):


• This is usually as multipoles: 


• At one-loop we just do some more loop integrals…


• The main point: our galaxy density now depends on  and 


• This is useful —  doesn’t need any bias parameter — it is directly 


• This is why DESI can measure !

P(k, μ) = ∑
ℓ

Pℓ(k)ℒℓ(μ)

δ v∥

v∥ ∝ σ1/2
8

σ8

58
Note: velocity bias can exist…

Ptree
gg,s(k, μ, z) = D2(z)[b1(z) + f(z)μ2]2 [Pnw

L (k) + e−k2Σ2(z)Pw
L (k)] + Pshot

Power Spectrum Multipoles

Philcox, Ivanov, Zaldarriaga, Simonovic, d’Amico, Senatore, Zhang, Lewandowski… 



Codes & Spectra
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Power Spectra — I
• We can compute the full IR-resummed, UV-

renormalized power spectra for galaxies at 1-loop  


• Ingredients for : 

• Cosmology: 


• Third-order bias: 


• Leading-order counterterms: 


• Next-to-leading-order stochasticity: 


• Alcock-Paczynski parameters: 

Pℓ(k) (ℓ ≤ 4)

D(z), f(z), PL(k)

b1, b2, b𝒢2
, bΓ3

c0, c2, c4

Pshot, a0, a2

α∥, α⊥

60

PT better than accurate!1 %

Pℓ ratio: k ≲ 0.15 hMpc−1

Ivanov, Nishimichi, Senatore, Zaldarriaga…

[c0 + c2μ2 + c4μ4]k2PL(k)

Pshot[1 + a0k2 + a2k2μ2]

P(k∥, k⊥) → P(α∥k∥, k⊥α⊥)

10 “nuisance” parameters



Oliver Philcox — COTB 2024

Power Spectra — II
• There are various public codes computing power spectrum multipoles using numerical tricks. 

1. CLASS-PT [Ivanov, Chudaykin, Simonovic, Cabass, Philcox, Zaldarriaga] 

• A modified version of CLASS  

• Computes all 1-loop PT integrals for matter/galaxies in < 1 s


• Includes non-Gaussianity ( ) and public Montepython likelihoods (including bispectra)


2. PyBird [Zhang, d’Amico, Senatore]


• A standalone code taking input from CLASS/CAMB


• Computes 1-loop PT integrals for matter/galaxies


• Includes public Montepython likelihoods 


3. Velocileptors [Chen, Vlah, White]


• A standalone code taking input from CLASS/CAMB


• Includes both Eulerian and Lagrangian perturbation theory for galaxies

fNL

61https://github.com/michalychforever/class-pt Ivanov, d’Amico, Philcox, Chen, Chudaykin, Simonovic, d’Amico, Zhang…

https://github.com/michalychforever/class-pt
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Power Spectra — III
• There are various public codes computing power spectrum 

multipoles using numerical tricks. 

1. CLASS-PT 

2. PyBird 

3. Velocileptors 

• Many new variants: PBJ, FOLPS , CLASS One-Loop…


• These have been heavily validated against each other


• They solve the same equations in different ways

ν

62https://github.com/michalychforever/class-pt Ivanov, d’Amico, Philcox, Chen, Chudaykin, Simonovic, d’Amico, Zhang…

(biases, priors, IR resummation, Euler/Lagrangian)

https://github.com/michalychforever/class-pt
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Bispectra — I
• We can compute the full IR-resummed bispectra for galaxies 

at tree-level 

• Ingredients for : 

• Cosmology: 


• Second-order bias: 


• Leading-order counterterm: 


• Leading-order stochasticity: 


• Alcock-Paczynski parameters:   

Btree
ℓ (k) (ℓ ≤ 4)

D(z), f(z), PL(k)

b1, b2, b𝒢2

c1

Pshot, Bshot, Ashot

α∥, α⊥

63https://github.com/oliverphilcox/full_shape_likelihoods
k ≲ 0.08 hMpc−1

Ivanov, Philcox, Nishimichi, Simonovic, Zaldarriaga…

(All included in our public likelihoods!)

13 “nuisance” parameters

B211 → c1k2μ2B211

[Bshot + (1 + Pshot)fμ2]Z1PL(k) + Ashot

https://github.com/oliverphilcox/full_shape_likelihoods
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Bispectra — II
• We can also compute the full bispectra at one-loop 

• This gets expensive! (lots of loops, lots of integrals)  


• Ingredients for : 

• Cosmology: 


• Fourth-order bias: 


• Next-to-leading-order counterterm ( )


• Next-to-leading-order stochasticity 


• Alcock-Paczynski parameters:   

B1−loop
ℓ (k) (ℓ ≤ 4)

D(z), f(z), PL(k)

b1, b2, b𝒢2
, b𝒢3

, bΓ3
, bδ3, ⋯

∼ k2, k2μ2

( ∼ 1,k2, k2μ2)

α∥, α⊥

64https://github.com/oliverphilcox/OneLoopBispectrum

B0 : k ≲ 0.15 hMpc−1

Ivanov, Philcox, d’Amico, Simonovic, Senatore, Zaldarriaga…

https://github.com/oliverphilcox/OneLoopBispectrum
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Trispectra

65
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Field-Level

66

• EFT can directly model the field itself, e.g.,


• HI intensity mapping 

• Galaxy density fields 

• We don’t need to compress to summary 
statistics!


• There’s much work doing field-level inference 
with perturbation theory likelihoods!

Ivanov, Simonovic, Obuljen, Schmittful, Schmidt, Stadler, Tucci… 

True Field EFT Field

Galaxies

Neutral Hydrogen

log ℒ( ̂δ |θ) = ⋯



Cosmological Constraints
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Building a Cosmological Likelihood — I

68Ivanov, d’Amico, Philcox, Chen, Chudaykin, Simonovic, d’Amico, Zhang…
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Building a Cosmological Likelihood — II
• In principle, we can constrain any parameter that enters:


• The growth factor 


• The growth rate 


• The power spectrum !


• The perturbative model has been heavily validated with 
N-body simulations


• For example, the PT-Challenge simulations test EFT in a 
 box


• Running MCMC analyses on simulated data finds 
unbiased results

D(z)

f(z)

PL(k)

566 h−3Gpc3

69 Ivanov, Nishimichi, Senatore, Zaldarriaga…
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TIME FOR A BREAK!
• How does this work in practice?

70

Run your own  analysis here!σ8

https://tinyurl.com/myfirstsigma8

What is ??σ8
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What have we learnt about cosmology?
• Boring CDM (DESI 2024):


• :  [from BAO]  or  [from ] km/s/Mpc 

•  

• :  

•  

• Fun stuff (BOSS):


• Curvature 


• Early dark energy, 


• Axion dark matter, 


• Massive relics, modified gravity, interacting neutrinos, dark sector, friction, … 

Λ

H0 68.6 ± 0.8 71 ± 4 keq

σ8 : 0.84 ± 0.03

Ωm 0.30 ± 0.01

∑ mν < 0.4 eV

Ωk ≈ 0

fEDE ≈ 0

faxion ≈ 0

71

All agrees with Planck CMB!

No strong evidence for anything weird!

All analysis is public: 
github.com/oliverphilcox/full_shape_likelihoods 

Ivanov, d’Amico, Philcox, Chen, Chudaykin, Simonovic, d’Amico, Zhang…

http://github.com/oliverphilcox/full_shape_likelihoods
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Primordial Non-Gaussianity — I
• Up to now, we have assumed . 


• New physics can change this!


• Examples:


• : Extra light-fields in inflation


• : Self-interactions in inflation


• “Cosmological Collider Physics” in inflation


• We can probe these phenomena using LSS!

BL ∼ ⟨δL(k1)δL(k2)δL(k3)⟩ = 0

f loc
NL

f eq,orth
NL

72

Galaxy Field

Primordial Field

Is this Gaussian???

Pℓ = Pℓ(bias, cosmo, PNG)

Bℓ = Bℓ(bias, cosmo, PNG)

Senatore, Assassi, Zaldarriaga, Schmidt…
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Primordial Non-Gaussianity — Ib
• Light fields are produced from the vacuum:

• These act as isocurvature modes  local shape

• Heavy fields are produced from the vacuum:

• These decay but can couple to the inflaton  local-like shape

• Very heavy fields are resonantly produced from the vacuum:

• These have oscillatory signals  local-like shape + oscillations

• Spinning massive fields are produced from the vacuum:

• These have peculiar spin-dependence  local-like shape + angular features

• The Lagrangian can be non-linear 

• e.g. inflaton has a sound-speed   equilateral & orthogonal shapes

• The inflationary vacuum can be non-Bunch Davies

• e.g. alpha-vacua:   folded shape

⇒

⇒

⇒

⇒

𝑐𝑠 < 1 ⇒

⇒
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Galaxy Field

Primordial Field

Is this Gaussian???

Senatore, Assassi, Zaldarriaga, Schmidt…
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Primordial Non-Gaussianity — II
• How does PNG change the theory?


1. New tree-level contributions:


2. New loop corrections:


3. New bias terms / counterterms:


• We must take all of these into account!
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Galaxy Field

Primordial Field

Is this Gaussian???

Bggg(k1, k2, z) ⊃ B111(k1, k2, z) ≡ Z1(k1, z)Z1(k2, z)Z1(k3, z)BL(k1, k2) ∝ fNL

Pgg(k, z) ⊃ P12(k, z) ≡ 2∫p
Z1(k)Z2(p, − k − p)BL(p, k) ∝ fNL

δg(k, z) ⊃ b1δ + bϕ f loc
NLδ/k2 + ⋯

(Already done in CLASS-PT!)
Senatore, Assassi, Zaldarriaga, Schmidt, Cabass, Ivanov, Philcox, d’Amico…

(This accounts for the cut-off dependence of !)P12
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Primordial Non-Gaussianity — III
• This has been used in data to constrain PNG!


1.   [DESI P],  [BOSS P+B]


2. :  [BOSS P+B]


3.  [BOSS P+B]


4. Massive-particle : roughly zero [BOSS]


• There’s many more things to explore, e.g., spins, masses, … 


• Some of these require trispectra!

f loc
NL : −4 ± 9 −33 ± 28

f eq
NL 260 ± 300

f orth
NL : − 23 ± 120

fNL

gNL, τNL,

75Senatore, Assassi, Zaldarriaga, Schmidt, Cabass, Ivanov, Philcox, d’Amico…
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Biases & Priors

76 Akitsu, Ivanov, Toomey, Cuesta-Lazarro, Chen, Zhang, Modi…

Improvements 
with known bias

• EFT constraints are limited by bias parameters


• For , constraints improve by  if we know bias!


• Better priors on bias parameters could help


• However: we must be careful not to bias the result!

fNL ≳ 10 ×
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What’s next for PT?
• There are many more things to explore:


• 2-loop power spectra


• Fast 1-loop bispectra


• Tree-level and 1-loop trispectra


• Field-level inference 

• Many more types of new physics 

• Whilst EFT is great, there’s some limitations:


• Limited to large-scales  

• Limited by knowledge of bias parameters 

• Limited by computation at high-order!

k < kNL

77Senatore, Assassi, Zaldarriaga, Schmidt, Cabass, Ivanov, Philcox, d’Amico, Ferraro, Sailer…



Thanks!!


