

Oliver Philcox (Princeton / IAS)

Gravity Group, Princeton University, 4/2/21

Extracting Information from Galaxy Surveys

- Fundamental observable: the galaxy overdensity field

Extracting Information from Galaxy Surveys

- Fundamental observable: the galaxy overdensity field

Mean density
Galaxy positions

- Analyze with summary statistics:
- Two-point correlation function (2PCF), $\xi(\mathbf{r})$

$$
\xi(r)=\langle\delta(\mathbf{x}) \delta(\mathbf{x}+\mathbf{r})\rangle
$$

- Power spectrum, $P(\mathbf{k})$

$$
(2 \pi)^{3} \delta_{D}\left(\mathbf{k}+\mathbf{k}^{\prime}\right) P(k)=\left\langle\delta(\mathbf{k}) \delta\left(\mathbf{k}^{\prime}\right)\right\rangle
$$

Extracting Information from Galaxy Surveys

- Fundamental observable: the galaxy overdensity field

- Analyze with summary statistics:
- Two-point correlation function (2PCF), $\xi(\mathbf{r})$

$$
\xi(r)=\langle\delta(\mathbf{x}) \delta(\mathbf{x}+\mathbf{r})\rangle
$$

- Power spectrum, $P(\mathbf{k})$

$$
(2 \pi)^{3} \delta_{D}\left(\mathbf{k}+\mathbf{k}^{\prime}\right) P(k)=\left\langle\delta(\mathbf{k}) \delta\left(\mathbf{k}^{\prime}\right)\right\rangle
$$

Extracting Information from Galaxy Surveys

- Fundamental observable: the galaxy overdensity field

- Analyze with summary statistics:
- Two-point correlation function (2PCF), $\xi(\mathbf{r})$

$$
\xi(r)=\langle\delta(\mathbf{x}) \delta(\mathbf{x}+\mathbf{r})\rangle
$$

- Power spectrum, $P(\mathbf{k})$

$$
(2 \pi)^{3} \delta_{D}\left(\mathbf{k}+\mathbf{k}^{\prime}\right) P(k)=\left\langle\delta(\mathbf{k}) \delta\left(\mathbf{k}^{\prime}\right)\right\rangle
$$

Understanding Anisotropy

- Redshift-space distortions lead to anisotropy
- Parametrize by galaxy separation and angle to line-of-sight, $\widehat{\mathbf{n}}$

$$
\xi(\mathbf{r})=\sum_{\ell} \xi_{\ell}(r) L_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) \quad P(\mathbf{k})=\sum_{\ell} P_{\ell}(k) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

- Define the multipoles:

$$
\begin{gathered}
\hat{\xi}_{\ell}(r)=(2 \ell+1) \int \frac{d \Omega_{r}}{4 \pi} \int d \mathbf{x} \delta(\mathbf{x}) \delta(\mathbf{x}+\mathbf{r}) L_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) \\
\hat{P}_{\ell}(k)=\frac{(2 \ell+1)}{V} \int \frac{d \Omega_{k}}{4 \pi} \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{-i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) \\
=\delta(\mathbf{k}) \delta^{*}(\mathbf{k})
\end{gathered}
$$

Understanding Anisotropy

\bigcirc Redshift-space distortions lead to anisotropy

- Parametrize by galaxy separation and angle to line-of-sight, $\widehat{\mathbf{n}}$

$$
\xi(\mathbf{r})=\sum_{\ell} \xi_{\ell}(r) L_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) \quad P(\mathbf{k})=\sum_{\ell} P_{\ell}(k) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

- Define the multipoles:

$$
\hat{\xi}_{\ell}(r)=(2 \ell+1) \int \frac{d \Omega_{r}}{4 \pi} \int d \mathbf{x} \delta(\mathbf{x}) \delta(\mathbf{x}+\mathbf{r}) L_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}})
$$

$$
\int \begin{aligned}
& \text { Legendre } \\
& \text { Polynomials }
\end{aligned}
$$

$$
\hat{P}_{\ell}(k)=\frac{(2 \ell+1)}{V} \int \frac{d \Omega_{k}}{4 \pi} \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{-i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

Understanding Anisotropy

\bigcirc Redshift-space distortions lead to anisotropy

- Parametrize by galaxy separation and angle to line-of-sight, $\widehat{\mathbf{n}}$

$$
\xi(\mathbf{r})=\sum_{\ell} \xi_{\ell}(r) L_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) \quad P(\mathbf{k})=\sum_{\ell} P_{\ell}(k) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

- Define the multipoles:

$$
\begin{gathered}
\hat{\xi}_{\ell}(r)=(2 \ell+1) \int \frac{d \Omega_{r}}{4 \pi} \int d \mathbf{x} \delta(\mathbf{x}) \delta(\mathbf{x}+\mathbf{r}) L_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) \\
\hat{P}_{\ell}(k)=\frac{(2 \ell+1)}{V} \int \frac{d \Omega_{k}}{4 \pi} \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{-i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) \\
=\delta(\mathbf{k}) \delta^{*}(\mathbf{k})
\end{gathered}
$$

Parameter Inference

CMB-Strength

Parameter Constraints,
including 1.6% on H_{0} !

Theory Model
(Effective Field Theory)

Beyond 2-Point Statistics

The Universe is non-Gaussian

Information in higher-point functions, e.g.

- Bispectrum / 3PCF [Gil-Marín+16, Slepian+15, d’Amico+19]

$$
(2 \pi)^{3} \delta_{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\left\langle\delta\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{2}\right) \delta\left(\mathbf{k}_{3}\right)\right\rangle
$$

- Trispectrum / 4PCF [Gualdi+20]

$$
(2 \pi)^{3} \delta_{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}\right) T\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\left\langle\delta\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{2}\right) \delta\left(\mathbf{k}_{3}\right) \delta\left(\mathbf{k}_{4}\right)\right\rangle
$$

These get steadily larger and harder to measure.

- Not used in many cosmological analyses yet!

Cosmology from $P_{\ell}(k)$: A Summary

- Fundamental observable: the galaxy overdensity field
- $P_{\ell}(k)$ parametrized by pair separation and line-of-sight angle
- Power spectrum estimators measure $|\delta(\mathbf{k})|^{2} L_{\ell}(\hat{\mathbf{k}} \cdot \widehat{\mathbf{n}})$
- Computed using Fast Fourier Transforms (FFTs)
- Compare data and theory with MCMC

Cosmology from $P_{\ell}(k)$: A Summary

- Fundamental observable: the galaxy overdensity field
- $P_{\ell}(k)$ parametrized by pair separation and line-of-sight angle
- Power spectrum estimators measure $|\delta(\mathbf{k})|^{2} L_{\ell}(\hat{\mathbf{k}} \cdot \widehat{\mathbf{n}})$
- Computed using Fast Fourier Transforms (FFTs)
- Compare data and theory with MCMC

Is this the best field to use?

How do we define this angle?

Can we estimate it more optimally?

Are FFTs always the most efficient?

Can data-compression help?

Parametrizing Anisotropy

Choosing the Line-of-Sight

- Galaxy correlation function depends on the angle between the separation vector Δ and the line-of-sight $\widehat{\mathbf{n}}$:

Angular Dependence

$$
\hat{\xi}_{\ell}(r)=\frac{2 \ell+1}{V} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \underbrace{\delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right)}_{\text {Density Fields }} L_{\ell}(\hat{\boldsymbol{\Delta}} \cdot \hat{\mathbf{n}})][\underbrace{\frac{\delta_{D}(r-\Delta)}{4 \pi r^{2}}}_{\text {Binning }}]
$$

Slepian \& Eisenstein 15, Philcox \& Slepian 21

Choosing the Line-of-Sight

- Galaxy correlation function depends on the angle between the separation vector Δ and the line-of-sight $\widehat{\mathbf{n}}$:

Angular Dependence

$$
\hat{\xi}_{\ell}(r)=\frac{2 \ell+1}{V} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \underbrace{\delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right)}_{\text {Density Fields }} L_{\ell}(\hat{\boldsymbol{\Delta}} \cdot \hat{\mathbf{n}})][\underbrace{\frac{\delta_{D}(r-\Delta)}{4 \pi r^{2}}}_{\text {Binning }}]
$$

- Options:
- Fixed $\widehat{\mathbf{n}}: \mathcal{O}\left(\theta^{0}\right)$ error, for survey size θ

Slepian \& Eisenstein 15, Philcox \& Slepian 21

Choosing the Line-of-Sight

- Galaxy correlation function depends on the angle between the separation vector Δ and the line-of-sight $\widehat{\mathbf{n}}$:

Angular Dependence

$$
\hat{\xi}_{\ell}(r)=\frac{2 \ell+1}{V} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \underbrace{\delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right)}_{\text {Density Fields }} \bar{L} \ell \ell(\hat{\boldsymbol{\Delta}} \cdot \hat{\mathbf{n}})_{\frac{\delta_{D}(r-\Delta)}{4 \pi r^{2}}}^{\underbrace{}_{\text {Binning }}}]
$$

- Options:
- Fixed $\widehat{\mathbf{n}}: \mathcal{O}\left(\theta^{0}\right)$ error, for survey size θ
- Yamamoto approximation: $\widehat{\mathbf{n}}=\hat{\mathbf{r}}_{1}, \mathcal{O}\left(\theta^{2}\right)$ error

Choosing the Line-of-Sight

- Galaxy correlation function depends on the angle between the separation vector Δ and the line-of-sight $\widehat{\mathbf{n}}$:

Angular Dependence

$$
\hat{\xi}_{\ell}(r)=\frac{2 \ell+1}{V} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \underbrace{\delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right)}_{\text {Density Fields }} L_{\ell(\hat{\boldsymbol{\Delta}} \cdot \hat{\mathbf{n}})}^{\frac{\delta_{D}(r-\Delta)}{4 \pi r^{2}}}]
$$

- Options:
- Fixed $\widehat{\mathbf{n}}: \mathcal{O}\left(\theta^{0}\right)$ error, for survey size θ
- Yamamoto approximation: $\widehat{\mathbf{n}}=\hat{\mathbf{r}}_{1}, \mathcal{O}\left(\theta^{2}\right)$ error

- Midpoint method: $\widehat{\mathbf{n}}=\widehat{\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{2}}, \mathcal{O}\left(\theta^{4+}\right)$ error

Slepian \& Eisenstein 15, Philcox \& Slepian 21

Lines-of-Sight in the Power Spectrum

- Same for the power spectrum:

$$
\hat{P}_{\ell}(k)=\frac{2 \ell+1}{V} \int_{\Omega_{k}} \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{\substack{\text { Fourier } \\ \text { Transform }}} \underbrace{-i \mathbf{\mathbf { r } _ { 2 } - \mathbf { r } _ { 1 })}}_{\text {Density Fields }} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

\bigcirc This is easy to implement for the Yamamoto approximation, $\widehat{\mathbf{n}}=\widehat{\mathbf{r}}_{\mathbf{1}}$:

$$
\hat{P}_{\ell}^{\mathrm{Yama}}(k)=\frac{4 \pi}{V} \int_{\Omega_{k}}\left[\sum_{m=-\ell}^{\ell} Y_{\ell}^{m *}(\hat{\mathbf{k}}) \mathcal{F}\left[Y_{\ell}^{m} \delta\right](\mathbf{k})\right] \delta^{*}(\mathbf{k})
$$

Hand+17,

Lines-of-Sight in the Power Spectrum

- Same for the power spectrum:

$$
\hat{P}_{\ell}(k)=\frac{2 \ell+1}{V} \int_{\Omega_{k}} \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{\substack{\text { Fourier } \\ \text { Transform }}} \underbrace{\substack{\text { Fik } \\ \left.\mathbf{r}_{2}-\mathbf{r}_{1}\right)}}_{\text {Density Fields }} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) L_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

\bigcirc This is easy to implement for the Yamamoto approximation, $\widehat{\mathbf{n}}=\hat{\mathbf{r}}_{\mathbf{1}}$:

$$
\hat{P}_{\ell}^{\mathrm{Yama}}(k)=\frac{4 \pi}{V} \int_{\Omega_{k}}\left[\sum_{m=-\ell}^{\ell} Y_{\ell}^{m *}(\hat{\mathbf{k}}) \mathcal{F}\left[Y_{\ell}^{m} \delta\right](\mathbf{k})\right] \delta^{*}(\mathbf{k})
$$

- But not separable for the midpoint method!

Implementing the Midpoint Method

- Use a trick to make the integrals separable:
- Expand in powers of $\theta \sim \Delta / r_{1}$:

Survey Angle, << 1

$$
L_{\ell}\left(\hat{\boldsymbol{\Delta}} \cdot \widehat{\mathbf{r}_{1}+\mathbf{r}_{2}}\right)=\sum_{\alpha=0}^{\infty} \sum_{J=0}^{\ell+\alpha} f_{J}^{\alpha, \ell} \overleftarrow{\left(\frac{\Delta}{2 r_{1}}\right)^{\alpha}} \underbrace{L_{J}\left(\hat{\boldsymbol{\Delta}} \cdot \mathbf{r}_{1}\right)}_{\text {Coefficients }}
$$

$$
\begin{aligned}
L_{2}\left(\hat{\boldsymbol{\Delta}} \cdot \widehat{\mathbf{r}_{1}+\mathbf{r}_{2}}\right)= & L_{2}\left(\mu_{1}\right)+\frac{6}{5}\left(\frac{\Delta}{2 r_{1}}\right)\left[L_{1}\left(\mu_{1}\right)-L_{3}\left(\mu_{1}\right)\right] \\
& +\frac{1}{35}\left(\frac{\Delta}{2 r_{1}}\right)^{2}\left[7 L_{0}\left(\mu_{1}\right)-55 L_{2}\left(\mu_{1}\right)+48 L_{4}\left(\mu_{1}\right)\right] \\
& -\frac{4}{105}\left(\frac{\Delta}{2 r_{1}}\right)^{3}\left[9 L_{1}\left(\mu_{1}\right)-49 L_{3}\left(\mu_{1}\right)+40 L_{5}\left(\mu_{1}\right)\right] \\
& +\frac{1}{385}\left(\frac{\Delta}{2 r_{1}}\right)^{4}\left[11 L_{0}\left(\mu_{1}\right)+165 L_{2}\left(\mu_{1}\right)-816 L_{4}\left(\mu_{1}\right)+640 L_{6}\left(\mu_{1}\right)\right] \\
& +\ldots
\end{aligned}
$$

Slepian \& Eisenstein 15

Implementing the Midpoint Method

- Use a trick to make the integrals separable:
- Expand in powers of $\theta \sim \Delta / r_{1}$:

$$
\text { Survey Angle, << } 1
$$

$$
L_{\ell}\left(\hat{\boldsymbol{\Delta}} \cdot \widehat{\mathbf{r}_{1}+\mathbf{r}_{2}}\right)=\sum_{\alpha=0}^{\infty} \sum_{J=0}^{\ell+\alpha}{f^{\alpha}}_{\text {Coefficients }}^{\alpha, \ell}\left(\frac{\Delta}{2 r_{1}}\right)^{\alpha} \underbrace{L_{J}\left(\hat{\boldsymbol{\Delta}} \cdot \mathbf{r}_{1}\right)}_{\text {Yamamoto Piece }}
$$

- Can now compute the 2PCF using Fourier transforms!
- Also applies to the power spectrum
- Same computational complexity as Yamamoto approximation

The Midpoint Method in Practice

- BOSS correlation function:
- $\theta \sim 0.1-0.2$ at the BAO scale
- Larger $r \Rightarrow$ Larger corrections
o Still $\ll 1 \sigma$ for BOSS

Philcox \& Slepian 21

The Midpoint Method in Practice

- BOSS correlation function:
- $\theta \sim 0.1-0.2$ at the BAO scale
- Larger $r \Rightarrow$ Larger corrections
o Still << 1σ for BOSS
- BOSS P(k):
- Spectrum is an integral over all r in survey
- $\theta \sim 1$ for the largest-modes
- Corrections are marginally important at all k
- Most important for wide surveys at low redshifts

P(k) Wide-Angle Corrections

2. Optimal Power Spectrum Estimation

"Throwing the window out the window..." - Z. Slepian

The FKP Estimator

Power spectrum isn't just $|\delta(\mathbf{k})|^{2}$.

- Neglects inhomogeneous noise and survey window functions

1. Define $\delta(\mathbf{r})$ as the difference between galaxy and random densities
2. Add an FKP weight to incorporate Poisson noise densities (and systematics)

This is the optimal solution on small-scales with Poisson noise

But:

- Not optimal on large scales
- Measures the window-convolved power spectrum

$$
\begin{aligned}
& \hat{P}(k)=\int \frac{d \Omega_{k}}{4 \pi} \int d \mathbf{r}_{1} d \mathbf{r}_{2} e^{-i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) \\
& \text { Galaxies } \underbrace{\text { Randoms }} \\
& \delta(\mathbf{r}) \rightarrow \frac{\mathbf{n}^{\prime}(\mathbf{r})\left[n_{g}(\mathbf{r})-\alpha_{r} n_{r}(\mathbf{r})\right]}{I^{1 / 2}}, \quad I \equiv \int d \mathbf{r} w^{2}(\mathbf{r}) \bar{n}^{2}(\mathbf{r})
\end{aligned}
$$

$$
w(\mathbf{r})=\frac{w_{\mathrm{sys}}(\mathbf{r})}{1+P_{\mathrm{FKP}} n(\mathbf{r})}
$$

$$
\text { Poisson Noise Correction, } P_{\mathrm{FKP}} \sim 10^{4}
$$

Optimal Estimators

Maximize the likelihood for data, \mathbf{d}, with band-powers \mathbf{p} and pixel covariance $\mathrm{C}(\mathbf{p})$

$$
-2 \log L[\mathbf{d}](\mathbf{p})=\mathbf{d}^{T} \mathrm{C}^{-1}(\mathbf{p}) \mathbf{d}+\operatorname{Tr} \log \mathrm{C}(\mathbf{p})+\text { const. } \longleftarrow \text { Gaussian likelihood }
$$

Gives a maximum-likelihood estimator for the unwindowed power spectrum:

Estimator is a quadratic function of the data, \hat{q}_{β}

Implementing the ML Estimator

$\hat{p}_{\alpha}^{\mathrm{ML}}=p_{\alpha}^{\mathrm{fd}}+\sum_{\beta} F_{\alpha \beta}^{-1}\left(\hat{q}_{\beta}-\bar{q}_{\beta}\right)$

- Need the quadratic estimator \hat{q}_{β} :

$$
\hat{q}(k)=\int \frac{d \Omega_{k}}{4 \pi} \int d \mathbf{r} d \mathbf{r}^{\prime} e^{-i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}\left[\mathrm{C}^{-1} \mathbf{d}\right](\mathbf{r})\left[\mathrm{C}^{-1} \mathbf{d}\right]\left(\mathbf{r}^{\prime}\right)
$$

- Just a power spectrum of the inverse-covariance weighted data
- Need the the covariance for each pair of pixels:
$C\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\underbrace{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right) \int_{\mathbf{k}} e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \sum_{\ell} P_{\ell}(k) L_{\ell}\left(\hat{\mathbf{k}} \cdot \hat{\mathbf{r}}^{\prime}\right)}_{\text {Signal }}+\overbrace{(1+\alpha) n(\mathbf{r}) \delta_{D}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}^{\text {Poisson Noise }}$

- This covariance is gigantic $\left(N_{\text {pix }} \times N_{\text {pix }}\right)$
- Never store directly
- Invert using conjugate gradient descent methods

Implementing the ML Estimator
 $\hat{p}_{\alpha}^{\mathrm{ML}}=p_{\alpha}^{\mathrm{fid}}+\sum_{\beta} F_{\alpha \beta}^{-1}\left(\hat{q}_{\beta}-\bar{q}_{\beta}\right)$

Pipeline:

1. Choose a fiducial cosmology
2. Compute the quadratic estimator on the data, \hat{q}_{β}
3. Repeat on simulations to get bias, \bar{q}_{β} and Fisher matrix, $F_{\alpha \beta}$
4. Combine to get the power spectrum
5. Optional: Repeat with new cosmology

Implementing the ML Estimator
 $$
\hat{p}_{\alpha}^{\mathrm{ML}}=p_{\alpha}^{\mathrm{fid}}+\sum_{\beta} F_{\alpha \beta}^{-1}\left(\hat{q}_{\beta}-\bar{q}_{\beta}\right)
$$

Pipeline:

1. Choose a fiducial cosmology
2. Compute the quadratic estimator on the data, \hat{q}_{β}
3. Repeat on simulations to get bias, \bar{q}_{β} and Fisher matrix, $F_{\alpha \beta}$
4. Combine to get the power spectrum
5. Optional: Repeat with new cosmology

Philcox 20b

Is this useful?

- Benefits:
- No window-convolution
- Optimal error-bars if Gaussian
- Less gridding
- Less shot-noise

Best for small, dense, anisotropic surveys, and large-scale modes

- Especially useful for f_{NL} and the bispectrum

3. Power Spectra without FFTs

Philcox \& Eisenstein 19,: Philcox 20a

Configuration-Space $P(k)$ Estimators

$\circ P(k)$ usually estimated using Fast Fourier Transforms

$$
\hat{P}(k)=\int \frac{d \Omega_{k}}{4 \pi}|\operatorname{FFT}[\delta](\mathbf{k})|^{2}
$$

- Complexity: $\mathcal{O}\left(N_{g} \log N_{g}\right)$ for N_{g} grid points

○Small scales need large $N_{g} \Rightarrow$ slow computation and high memory usage!

$$
\text { Time } \propto k_{\max } \log k_{\max }
$$

- 2PCF estimated by counting pairs of particles with $\mathcal{O}\left(N^{2}\right)$ complexity

$$
\xi^{a}=\int d \mathbf{r}_{1} d \mathbf{r}_{2} \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{2}\right) \Theta^{a}\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right)=\sum_{i \neq j} w_{i} w_{j} \Theta^{\text {Weights }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) \leftarrow \text { Binning function }
$$

Sum over galaxies

- This is fast on small scales!

Configuration-Space $P(k)$ Estimators

- We can do the same for $P(k)$:

Weights
$P(k) \propto \int \frac{d \Omega_{k}}{4 \pi} \sum_{i \neq j} w_{i} w_{j} e^{-i \mathbf{k} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}=\sum_{i \neq j} w_{i} w_{j} j_{0}\left(k\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) \leftarrow 0^{\text {th }}$ order Bessel function

- But we need to sum over all N^{2} pairs of galaxies in the survey!
- Only sum up to some maximum radius R_{0}, via a smooth function $W\left(r ; R_{0}\right)$

$$
P\left(k ; R_{0}\right) \propto \sum_{i \neq j} w_{i} w_{j} j_{0}\left(k\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) W\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| ; R_{0}\right)
$$

$$
\text { Time } \propto N n R_{0}^{3} \propto k_{\min }^{-3}
$$

Configuration-Space $P_{\ell}(k)$ Estimators

Benefits

- Speed
- Time scales as $k_{\text {min }}^{-3}$
- Memory
- No storage of large FFT grids
- Aliasing
- No gridding!
- Shot-noise
- Removes self-counts -> Poissonian shot-noise!
- Window function

- Can remove survey window, just as for 2PCF

Configuration-Space $P_{\ell}(k)$ Estimators

- Implemented in the HIPSTER code
- Combine with FFT-based treatments:
- FFTs are fastest on large scales (time $\sim k_{\text {max }} \log \mathrm{k}_{\text {max }}$)
- HIPSTER is fastest on small scales (time $\sim k_{\min }^{-3}$)
- Can be similarly applied to bispectra
- Time $\propto N n^{2} R_{0}^{6} \propto k_{\text {min }}^{-6}$
- Same scaling with number density as for $P(k)$!

Conclusions

- We're not finished with the galaxy power spectrum yet!
- Recent updates include:
- More accurate lines-of-sight
- Closer to optimal large-scale $P_{\ell}(k)$ estimation
- Faster small-scale computation without FFTs
- (Powerful analysis-specific data compression)

Coming soon:

- Estimating the bispectrum and beyond!

The Curse of Dimensionality

$\circ P_{\ell}(k)$ is high-dimensional, e.g.;

- BOSS has ~ 100 bins
- Only use these to measure ~ 10 parameters
- Conventional likelihoods use a sample covariance
- Need $N_{\text {mocks }}>N_{\text {bins }}$ to invert
- Too few mocks \Rightarrow parameter shifts or error inflation

- We should compress our data!

Data Compression via PCA

- A canonical approach: [e.g. Scoccimarro 2000]
- Compute the theoretical covariance matrix
- Perform a Principal Component Analaysis
- Project the data onto the first few components
- This chooses the basis vectors that contribute most to the signal-to-noise
- Signal-to-noise isn't everything!

Data Compression via Subspace Projection

New* approach

- Draw sets of parameters from the priors
- Compute the theory model at each point
- Perform a Singular Value Decomposition on the noise-weighted samples
- Use these basis vectors to perform the compression

Picks out directions contributing most to the loglikelihood

$$
\theta=\left\{\omega_{\mathrm{cdm}}, A_{s} / A_{s, \mathrm{fid}}, h, \ldots\right\} \times\left\{b_{1}, b_{2}, b_{G_{2}}, b_{4}, c_{s, 0}, c_{s, 2}, P_{\text {shot }}\right\}
$$

$$
X_{i a}=\sum_{\alpha} U_{i \alpha} D_{\alpha} V_{\alpha a}
$$

Basis Vectors

$$
X_{a}^{(i)} \approx \sum_{\alpha=1}^{N_{\mathrm{SV}}} c_{\alpha}^{(i)} V_{\alpha a}
$$

Subspace Coefficients

Data Compression via Subspace Projection

- This is the best linear compression for a specific analysis
- Set the number of basis vectors robustly
- Estimate coefficients optimally

For BOSS 10-parameter analysis:

Power Spectrum

- 100-bin P(k) -----> 12 subspace coefficients
- 2135-bin $B\left(k_{1}, k_{2}\right)$----> 8 subspace coefficients

Applicable to any analysis given:

1. Theory Model
2. Parameter Priors
3. Rough Covariance Estimate

Too Few Mocks -> Parameter Biases

Conclusions

- We're not finished with the galaxy power spectrum yet!
- Recent updates include:
- More accurate lines-of-sight
- Closer to optimal large-scale $P_{\ell}(k)$ estimation
- Faster small-scale computation without FFTs
- Powerful analysis-specific data compression

Coming soon:

- Estimating the bispectrum and beyond!

Bonus II: Alternative $2-$ Point Statistics

Philcox $+20 c$, Philcox +20 e

Beyond the Density Field

- What should we compute the two-point function of?
- For a Gaussian universe, the power-spectrum of galaxy overdensity contains all the information
- The Universe is not Gaussian:
- Information cascades to the higher-point functions
- Low-density regions carry a lot of cosmological information, and contribute little to δ [e.g. Pisani+19]
- Can use a transformed field, e.g.:
- Reconstructed Density Fields [e.g. Eisenstein+07]
- Log-normal Transforms [Neyrinck+09, Wang+11]
- Gaussianized Density Fields [Weinberg 92, Neyrinck+17]
- Marked Density Fields [Stoyan 84, White 16, Massara+20]

Beyond the Density Field

- What should we compute the two-point function of?
- For a Gaussian universe, the power-spectrum of galaxy overdensity contains all the information
- The Universe is not Gaussian:
- Information cascades to the higher-point functions
- Low-density regions carry a lot of cosmological information, and contribute little to δ [e.g. Pisani+19]
- Can use a transformed field, e.g.:

- Reconstructed Density Fields [e.g. Eisenstein+07]
- Log-normal Transforms [Neyrinck+09, Wang+11]
- Gaussianized Density Fields [Weinberg 92, Neyrinck+17]
- Marked Density Fields [Stoyan 84, White 16, Massara+20]

Beyond the Density Field

- What should we compute the two-point function of?
- For a Gaussian universe, the power-spectrum of galaxy overdensity contains all the information
- The Universe is not Gaussian:

- Information cascades to the higher-point functions
- Low-density regions carry a lot of cosmological information, and contribute little to δ [e.g. Pisani+19]
- Can use a transformed field, e.g.:
- Reconstructed Density Fields [e.g. Eisenstein+07]
- Log-normal Transforms [Neyrinck+09, Wang+11]
- Gaussianized Density Fields [Weinberg 92, Neyrinck+17]
- Marked Density Fields [Stoyan 84, White 16, Massara+20]

Beyond the Density Field

- What should we compute the two-point function of?
- For a Gaussian universe, the power-spectrum of galaxy overdensity contains all the information
- The Universe is not Gaussian:
- Information cascades to the higher-point functions
- Low-density regions carry a lot of cosmological information, and contribute little to δ [e.g. Pisani+19]
- Can use a transformed field, e.g.:
- Reconstructed Density Fields [e.g. Eisenstein+07]
- Log-normal Transforms [Neyrinck+09, Wang+11]
- Gaussianized Density Fields [Weinberg 92, Neyrinck+17]
- Marked Density Fields [Stoyan 84, White 16, Massara+20]

Fisher Matrix Constraints on Neutrino Mass

The Marked Density Field

- Define a new density field by weighting by the mark

$$
\begin{aligned}
m(\mathbf{x}) & =\left(\frac{1+\delta_{s}}{1+\delta_{s}+\delta_{R}(\mathbf{x})}\right)^{p} \\
\rho_{M}(\mathbf{x}) & =m(\mathbf{x}) n(\mathbf{x})=m(\mathbf{x}) \bar{n}[1+\delta(\mathbf{x})]
\end{aligned}
$$

depending on smoothed overdensity $\delta_{R}(\mathbf{x})$

The Marked Density Field

- Define a new density field by weighting by the mark

$$
\begin{aligned}
m(\mathbf{x}) & =\left(\frac{1+\delta_{s}}{1+\delta_{s}+\delta_{R}(\mathbf{x})}\right)^{p} \\
\rho_{M}(\mathbf{x}) & =m(\mathbf{x}) n(\mathbf{x})=m(\mathbf{x}) \bar{n}[1+\delta(\mathbf{x})]
\end{aligned}
$$

depending on smoothed overdensity $\delta_{R}(\mathbf{x})$

- Significantly enhances constraints on:
- Neutrino masses [Massara+20]

- Modified gravity [White 16]

The Marked Density Field

- Can we model the marked spectrum?
- Yes! Using Effective Field Theory
- Can we understand the impressive information content?
- The mark couples small-scale non-Gaussianities to large-scale modes
- So we find more neutrino information at low- k !
- But:
- Modelling is difficult at low-z
- Is it still useful for galaxies?

Massara+20, Philcox+20ce

The Marked Density Field

- Can we model the marked spectrum?
- Yes! Using Effective Field Theory
- Can we understand the impressive information content?
- The mark couples small-scale non-Gaussianities to large-scale modes
- So we find more neutrino information at low- k !
- But:
- Modelling is difficult at low-z
- Is it still useful for galaxies?

Galaxies at $Z=1$

Conclusions

- We're not finished with the galaxy power spectrum yet!
- Recent updates include:
- More accurate lines-of-sight
- Closer to optimal large-scale $P_{\ell}(k)$ estimation
- Faster small-scale computation without FFTs
- Powerful analysis-specific data compression
- Statistics beyond the density field

Coming soon:

- Estimating the bispectrum and beyond!

Shift Theorem Convergence

2PCF Wide-Angle Effects

P(k) Wide-Angle Effects

Optimal Estimators: Filtering

FKP: $S_{F K P}\left[S_{F K P}+N\right]^{-1}\left(n_{g}-n\right)$

Optimal Estimators: Spectra

Optimal Estimators: Covariance

Unwindowed: FKP

Unwindowed: ML

Optimal Estimators: Results

HIPSTER: Accuracy

HIPSTER: Effects of Windowing

HIPSTER: Bispectra

Compression: Mean of Mocks \& Single Mock

Compression: Number of Basis Vectors

Marked Spectra: Matter Contributions

Marked Spectra: Information Content \& Low-z

