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Extracting Information from Galaxy Surveys
o Fundamental observable: the galaxy overdensity field
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Extracting Information from Galaxy Surveys
o Fundamental observable: the galaxy overdensity field

o Analyze with summary statistics:

o Two-point correlation function (2PCF), 𝜉(𝐫)

o Power spectrum, 𝑃(𝐤)
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Extracting Information from Galaxy Surveys
o Fundamental observable: the galaxy overdensity field

o Analyze with summary statistics:

o Two-point correlation function (2PCF), 𝜉(𝐫)

o Power spectrum, 𝑃(𝐤)
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P(k) of 50 Patchy Simulations

Extracting Information from Galaxy Surveys
o Fundamental observable: the galaxy overdensity field

o Analyze with summary statistics:

o Two-point correlation function (2PCF), 𝜉(𝐫)

o Power spectrum, 𝑃(𝐤)

Galaxy positions

Random particle 
positions

Mean density

𝐫

BAO wiggles!

Equality peak!



Understanding Anisotropy
o Redshift-space distortions lead to anisotropy

o Parametrize by galaxy separation and angle to line-of-sight, '𝐧

o Define the multipoles:

CfA Redshift Survey

Legendre 
Polynomials

= 𝛿 𝐤 𝛿∗(𝐤)
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Parameter Inference

MCMC

BOSS DR12 Spectra

Linear Theory 1-loop PT Shot-noise Counterterms

Theory Model
(Effective Field Theory)

Planck
BOSS Pℓ(𝑘)

Ivanov+19, Philcox+20a

Mock Datasets

CMB-Strength 
Parameter Constraints, 
including 1.6% on 𝐻#!



Beyond 2-Point Statistics
The Universe is non-Gaussian

Information in higher-point functions, e.g.

o Bispectrum / 3PCF [Gil-Marín+16, Slepian+15, d’Amico+19]

o Trispectrum / 4PCF [Gualdi+20]

These get steadily larger and harder to measure.

o Not used in many cosmological analyses yet!
Chudaykin & Ivanov 19

3-point Forecasts for Euclid



Cosmology from 𝑃ℓ(𝑘): A Summary
o Fundamental observable: the galaxy overdensity field

o 𝑃ℓ 𝑘 parametrized by pair separation and line-of-sight angle

o Power spectrum estimators measure 𝛿 𝐤 "𝐿ℓ('𝐤 ⋅ )𝐧)

o Computed using Fast Fourier Transforms (FFTs)

o Compare data and theory with MCMC

Planck
BOSS Pℓ(𝑘)



Cosmology from 𝑃ℓ(𝑘): A Summary
o Fundamental observable: the galaxy overdensity field

o 𝑃ℓ 𝑘 parametrized by pair separation and line-of-sight angle

o Power spectrum estimators measure 𝛿 𝐤 "𝐿ℓ('𝐤 ⋅ )𝐧)

o Computed using Fast Fourier Transforms (FFTs)

o Compare data and theory with MCMC

How do we define this angle?

Can we estimate it more optimally?

Are FFTs always the most efficient?

Can data-compression help?

Is this the best field to use?



1. Parametrizing Anisotropy

Philcox & Slepian 21



Choosing the Line-of-Sight

Slepian & Eisenstein 15, 
Philcox & Slepian 21

o Galaxy correlation function depends on the angle between the 
separation vector 𝚫 and the line-of-sight )𝐧:
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o Galaxy correlation function depends on the angle between the 
separation vector 𝚫 and the line-of-sight )𝐧:

o Options:
o Fixed '𝐧 : 𝒪(𝜃#) error, for survey size 𝜃
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separation vector 𝚫 and the line-of-sight )𝐧:
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Choosing the Line-of-Sight

Slepian & Eisenstein 15, 
Philcox & Slepian 21

o Galaxy correlation function depends on the angle between the 
separation vector 𝚫 and the line-of-sight )𝐧:

o Options:
o Fixed '𝐧 : 𝒪(𝜃#) error, for survey size 𝜃

o Yamamoto approximation: '𝐧 = 6𝐫𝟏, 𝒪(𝜃%) error

o Midpoint method: '𝐧 = 7𝐫𝟏 + 𝐫𝟐, 𝒪(𝜃'() error
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Lines-of-Sight in the Power Spectrum

Hand+17,
Philcox & Slepian 21

o Same for the power spectrum:

o This is easy to implement for the Yamamoto approximation, )𝐧 = /𝐫𝟏: 
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Lines-of-Sight in the Power Spectrum

Hand+17,
Philcox & Slepian 21

o Same for the power spectrum:

o This is easy to implement for the Yamamoto approximation, )𝐧 = /𝐫𝟏: 

o But not separable for the midpoint method!

Density Fields

Angular Dependence
Fourier 

Transform

Spherical Harmonics

𝐫𝟏

𝐫𝟐

𝚫

2𝚫 ⋅ '𝐧

#𝐧

𝜃



Implementing the Midpoint Method

Slepian & Eisenstein 15
Philcox & Slepian 21

o Use a trick to make the integrals separable:

o Expand in powers of 𝜃 ∼ Δ/𝑟):

Coefficients

Survey Angle, ≪ 1

Yamamoto Piece
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Implementing the Midpoint Method

Castorina & White 18
Philcox & Slepian 21

o Use a trick to make the integrals separable:

o Expand in powers of 𝜃 ∼ Δ/𝑟):

o Can now compute the 2PCF using Fourier transforms!

o Also applies to the power spectrum

o Same computational complexity as Yamamoto approximation

Coefficients

Survey Angle, ≪ 1

Yamamoto Piece

𝐫𝟏

𝐫𝟐

𝚫

2𝚫 ⋅ '𝐧

#𝐧
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The Midpoint Method in Practice

Philcox & Slepian 21

o BOSS correlation function:
o 𝜃 ∼ 0.1 − 0.2 at the BAO scale
o Larger r ⇒ Larger corrections
o Still ≪ 1𝜎 for BOSS

2PCF Wide-Angle Corrections



The Midpoint Method in Practice

Philcox & Slepian 21

o BOSS correlation function:
o 𝜃 ∼ 0.1 − 0.2 at the BAO scale
o Larger r ⇒ Larger corrections
o Still ≪ 1𝜎 for BOSS

o BOSS 𝑃 𝑘 : 
o Spectrum is an integral over all r in survey
o 𝜃 ∼ 1 for the largest-modes
o Corrections are marginally important at all k

o Most important for wide surveys at low 
redshifts

P(k) Wide-Angle Corrections



2. Optimal Power Spectrum Estimation
“Throwing the window out the window…” – Z. Slepian

Philcox 20b



The FKP Estimator

Feldman+94 
Tegmark+98

Power spectrum isn’t just 𝛿 𝐤 !. 

o Neglects inhomogeneous noise and survey window functions

1. Define 𝛿(𝐫) as the difference between galaxy and random 
densities

2. Add an FKP weight to incorporate Poisson noise densities 
(and systematics)

This is the optimal solution on small-scales with Poisson noise

But:

o Not optimal on large scales

o Measures the window-convolved power spectrum

Systematics

Poisson Noise Correction, 𝑃!"# ∼ 10$

RandomsGalaxies



Optimal Estimators

Tegmark 97
Philcox 20b

Maximize the likelihood for data, d, with band-powers p and pixel covariance C(p)

Gives a maximum-likelihood estimator for the unwindowed power spectrum:

Estimator is a quadratic function of the data, /𝑞%

Gaussian likelihood

Known
Fiducial Model

Fisher matrix (from sims)

Bias term 
(from sims)

Quadratic 
estimator 

(from data)



Implementing the ML Estimator

Philcox 20b

o Need the quadratic estimator /𝑞%:

o Just a power spectrum of the inverse-covariance weighted data

o Need the the covariance for each pair of pixels:

o This covariance is gigantic (𝑁&'( × 𝑁&'( )
o Never store directly
o Invert using conjugate gradient descent methods

Iterative computation of 𝐶%&𝐝
from an initial guess

Signal

Poisson Noise



Implementing the ML Estimator

Philcox 20b

Pipeline:

1. Choose a fiducial cosmology

2. Compute the quadratic estimator
on the data, /𝑞%

3. Repeat on simulations to get 
bias, 6𝑞% and Fisher matrix, 𝐹)%

4. Combine to get the power 
spectrum

5. Optional: Repeat with new 
cosmology



Implementing the ML Estimator

Philcox 20b

Conventional (windowed)
FKP (unwindowed)
Optimal (unwindowed)

Pipeline:

1. Choose a fiducial cosmology

2. Compute the quadratic estimator
on the data, /𝑞%

3. Repeat on simulations to get 
bias, 6𝑞% and Fisher matrix, 𝐹)%

4. Combine to get the power 
spectrum

5. Optional: Repeat with new 
cosmology



Is this useful?

Philcox 20b

o Benefits:

o No window-convolution
oOptimal error-bars if Gaussian
o Less gridding
o Less shot-noise

Best for small, dense, anisotropic
surveys, and large-scale modes

o Especially useful for 𝑓*+and the 
bispectrum

Conventional (windowed)
FKP (unwindowed)
Optimal (unwindowed)



3. Power Spectra without FFTs

Philcox & Eisenstein 19, Philcox 20a



Configuration-Space 𝑃(𝑘) Estimators

Philcox & Eisenstein 19, Philcox 20

o 𝑃(𝑘) usually estimated using Fast Fourier Transforms

o Complexity: 𝒪(𝑁' log𝑁') for 𝑁' grid points

oSmall scales need large 𝑁, ⇒ slow computation and high memory usage!

o 2PCF estimated by counting pairs of particles with 𝒪(𝑁") complexity

o This is fast on small scales! 

Binning function

Sum over galaxies

Weights

𝑇𝑖𝑚𝑒 ∝ 𝑘()* log 𝑘()*

𝑇𝑖𝑚𝑒 ∝ 𝑁𝑛𝑅()*+



o We can do the same for 𝑃 𝑘 :

o But we need to sum over all 𝑁" pairs of galaxies in the 
survey!

o Only sum up to some maximum radius 𝑅,, via a smooth 
function 𝑊(𝑟; 𝑅,)

Configuration-Space 𝑃(𝑘) Estimators

Philcox & Eisenstein 19, Philcox 20

Sum over galaxies

Weights
0th order Bessel function

𝑇𝑖𝑚𝑒 ∝ 𝑁𝑛𝑅,+ ∝ 𝑘(-.%+



Benefits

o Speed
o Time scales as 𝑘(-.%+

o Memory
o No storage of large FFT grids

o Aliasing
o No gridding!

o Shot-noise
o Removes self-counts -> Poissonian shot-noise!

o Window function
o Can remove survey window, just as for 2PCF

Configuration-Space 𝑃ℓ(𝑘) Estimators

Philcox & Eisenstein 19, Philcox 20

Lines = FFT-Based
Points = Configuration-Space



o Implemented in the HIPSTER code

o Combine with FFT-based treatments:

o FFTs are fastest on large scales (time ∼ 𝑘()* log k()*)
o HIPSTER is fastest on small scales (time ∼ 𝑘(-.%+ )

o Can be similarly applied to bispectra

o Time ∝ 𝑁𝑛/𝑅,0 ∝ 𝑘(-.%0

o Same scaling with number density as for 𝑃(𝑘)!

Configuration-Space 𝑃ℓ(𝑘) Estimators

Philcox & Eisenstein 19, Philcox 20HIPSTER.rtfd.io

Same Computation 
Time!

http://www.hipster.rtfd.io/


o We’re not finished with the galaxy power spectrum yet!

o Recent updates include:
oMore accurate lines-of-sight

o Closer to optimal large-scale 𝑃ℓ 𝑘 estimation

o Faster small-scale computation without FFTs

o (Powerful analysis-specific data compression)

Coming soon:
o Estimating the bispectrum and beyond!More questions? 

Email ohep2@cantab.ac.uk

Twitter: @oliver_philcox
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Bonus I: Data Compression
Fewer Mocks & Less Noise

Philcox+20d



The Curse of Dimensionality
o 𝑃ℓ(𝑘) is high-dimensional, e.g.;
o BOSS has ∼ 100 bins
o Only use these to measure ∼ 10 parameters

o Conventional likelihoods use a sample covariance 
o Need 𝑁23456 > 𝑁7896 to invert
o Too few mocks ⇒ parameter shifts or error inflation

o We should compress our data!

Gil-Marin+16, Ivanov+19

Power Spectrum Bispectrum



Data Compression via PCA
o A canonical approach:  [e.g. Scoccimarro 2000]

o Compute the theoretical covariance matrix
o Perform a Principal Component Analaysis
o Project the data onto the first few components

o This chooses the basis vectors that contribute most to the signal-
to-noise

o Signal-to-noise isn’t everything!

Beutler+16

Power Spectrum Covariance

Basis Vectors

PCA

Coefficients

𝑃 𝑘 ≈[
8

a8𝑊8(𝑘)

See also MOPED: Heavens+00, Alsing+18 , KL: Tegmark+97



Data Compression via Subspace Projection
New* approach

o Draw sets of parameters from the priors

o Compute the theory model at each point

o Perform a Singular Value Decomposition on the 
noise-weighted samples

o Use these basis vectors to perform the compression

Picks out directions contributing most to the log-
likelihood
*somewhat inspired by gravitational wave analyses [e.g. Roulet+19]

Philcox+20d

Parameters used in the analysis

Subspace Coefficients

Basis Vectors

Theory ModelCovariance Estimate



Data Compression via Subspace Projection
o This is the best linear compression for a specific analysis

o Set the number of basis vectors robustly

o Estimate coefficients optimally

For BOSS 10-parameter analysis:

o 100-bin P(k) -----> 12 subspace coefficients 
o 2135-bin B(k1,k2) ----> 8 subspace coefficients

Applicable to any analysis given:

1. Theory Model

2. Parameter Priors

3. Rough Covariance Estimate

Philcox+20d, Philcox 20b

Power 
Spectrum

Subspace 
Coefficients



Too Few Mocks -> Parameter Biases

Philcox+20d

Noise-induced bias

Error Inflation

No bias

No Inflation



o We’re not finished with the galaxy power spectrum yet!

o Recent updates include:
oMore accurate lines-of-sight

o Closer to optimal large-scale 𝑃ℓ 𝑘 estimation

o Faster small-scale computation without FFTs

o Powerful analysis-specific data compression

Coming soon:
o Estimating the bispectrum and beyond!More questions? 

Email ohep2@cantab.ac.uk

Twitter: @oliver_philcox
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Bonus II: Alternative 2-Point Statistics

Philcox+20c, Philcox+20e



Beyond the Density Field
o What should we compute the two-point  function of? 
o For a Gaussian universe, the power-spectrum of galaxy 

overdensity contains all the information

o The Universe is not Gaussian:
o Information cascades to the higher-point functions
o Low-density regions carry a lot of cosmological information, and 

contribute little to 𝛿 [e.g. Pisani+19]

o Can use a transformed field, e.g.:
o Reconstructed Density Fields [e.g. Eisenstein+07]

o Log-normal Transforms [Neyrinck+09, Wang+11]

o Gaussianized Density Fields [Weinberg 92, Neyrinck+17]

o Marked Density Fields [Stoyan 84, White 16, Massara+20]

Massara+20

Overdensity Field



Beyond the Density Field

Post-reconstruction

z = 0.3
Pre-reconstruction

Eisenstein+06, Padamanbhan+12

o What should we compute the two-point  function of? 
o For a Gaussian universe, the power-spectrum of galaxy 

overdensity contains all the information

o The Universe is not Gaussian:
o Information cascades to the higher-point functions
o Low-density regions carry a lot of cosmological information, and 

contribute little to 𝛿 [e.g. Pisani+19]

o Can use a transformed field, e.g.:
o Reconstructed Density Fields [e.g. Eisenstein+07]

o Log-normal Transforms [Neyrinck+09, Wang+11]

o Gaussianized Density Fields [Weinberg 92, Neyrinck+17]

o Marked Density Fields [Stoyan 84, White 16, Massara+20]



Beyond the Density Field

Post-reconstruction

z = 0.3

Pre-reconstruction

Philcox+20a

CMB

Galaxy P(k)

Galaxy P(k) + 
Reconstruction

o What should we compute the two-point  function of? 
o For a Gaussian universe, the power-spectrum of galaxy 

overdensity contains all the information

o The Universe is not Gaussian:
o Information cascades to the higher-point functions
o Low-density regions carry a lot of cosmological information, and 

contribute little to 𝛿 [e.g. Pisani+19]

o Can use a transformed field, e.g.:
o Reconstructed Density Fields [e.g. Eisenstein+07]

o Log-normal Transforms [Neyrinck+09, Wang+11]

o Gaussianized Density Fields [Weinberg 92, Neyrinck+17]

o Marked Density Fields [Stoyan 84, White 16, Massara+20]



Beyond the Density Field

Massara+20

Fisher Matrix Constraints on Neutrino Mass

Marked Spectrum

Power Spectrum

o What should we compute the two-point  function of? 
o For a Gaussian universe, the power-spectrum of galaxy 

overdensity contains all the information

o The Universe is not Gaussian:
o Information cascades to the higher-point functions
o Low-density regions carry a lot of cosmological information, and 

contribute little to 𝛿 [e.g. Pisani+19]

o Can use a transformed field, e.g.:
o Reconstructed Density Fields [e.g. Eisenstein+07]

o Log-normal Transforms [Neyrinck+09, Wang+11]

o Gaussianized Density Fields [Weinberg 92, Neyrinck+17]

o Marked Density Fields [Stoyan 84, White 16, Massara+20]



The Marked Density Field
o Define a new density field by weighting by the mark

depending on smoothed overdensity 𝛿" 𝐱

Massara+20

Unweighted Density Field



The Marked Density Field
o Define a new density field by weighting by the mark

depending on smoothed overdensity 𝛿" 𝐱

o Significantly enhances constraints on:

o Neutrino masses [Massara+20]

oModified gravity [White 16]

Massara+20

Marked Density Field



The Marked Density Field
o Can we model the marked spectrum?
o Yes! Using Effective Field Theory

o Can we understand the impressive information 
content?
o The mark couples small-scale non-Gaussianities to 

large-scale modes
o So we find more neutrino information at low-𝑘!

o But:
o Modelling is difficult at low-z
o Is it still useful for galaxies?

Massara+20, Philcox+20ce

Marked Power Spectrum

Matter at 𝑧 = 1

Linear Theory

1-loop EFT



𝑧 = 1

Monopole Quadrupole

Linear Theory

1-loop EFT

The Marked Density Field
o Can we model the marked spectrum?
o Yes! Using Effective Field Theory

o Can we understand the impressive information 
content?
o The mark couples small-scale non-Gaussianities to 

large-scale modes
o So we find more neutrino information at low-𝑘!

o But:
o Modelling is difficult at low-z
o Is it still useful for galaxies?

Massara+20, Philcox+20ce

Galaxies at 𝑧 = 1



o We’re not finished with the galaxy power spectrum yet!

o Recent updates include:
oMore accurate lines-of-sight

o Closer to optimal large-scale 𝑃ℓ 𝑘 estimation

o Faster small-scale computation without FFTs

o Powerful analysis-specific data compression

o Statistics beyond the density field

Coming soon:
o Estimating the bispectrum and beyond!More questions? 

Email ohep2@cantab.ac.uk

Twitter: @oliver_philcox
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Shift Theorem Convergence



2PCF Wide-Angle Effects



P(k) Wide-Angle Effects



Optimal Estimators: Filtering



Optimal Estimators: Spectra



Optimal Estimators: Covariance



Optimal Estimators: Results



HIPSTER: Accuracy



HIPSTER: Effects of Windowing



HIPSTER: Bispectra



Compression: Mean of Mocks & Single Mock



Compression: Number of Basis Vectors



Marked Spectra: Matter Contributions



Marked Spectra: Information Content & Low-𝑧


