

arXiv: 2002.04035

Constraining Cosmology from Galaxy Surveys

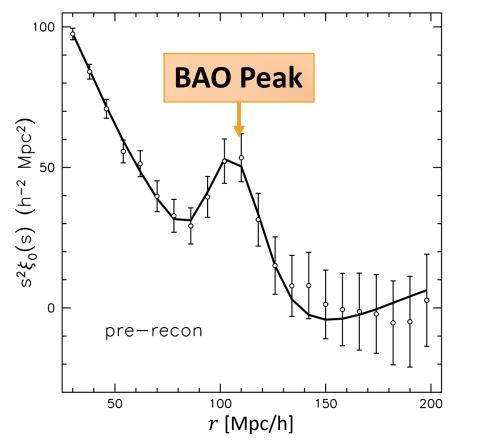
OLIVER PHILCOX (PRINCETON)

Collaborators:

- Misha Ivanov (NYU)
- Marko Simonović (CERN)
- Matias Zaldarriaga (IAS)

Mar 2, 2020

Cosmology from the BAO Peak



BOSS Correlation Function Monopole

- Measure the BAO peak radially and tangentially to constrain the Alcock-Paczynski (AP) parameters;

 $\xi(r_{\parallel},r_{\perp}) \qquad \propto \qquad \xi^{\text{fid}}\left(r_{\parallel}\alpha_{\parallel},r_{\perp}\alpha_{\perp}\right)$

True correlation function

Fiducial correlation function

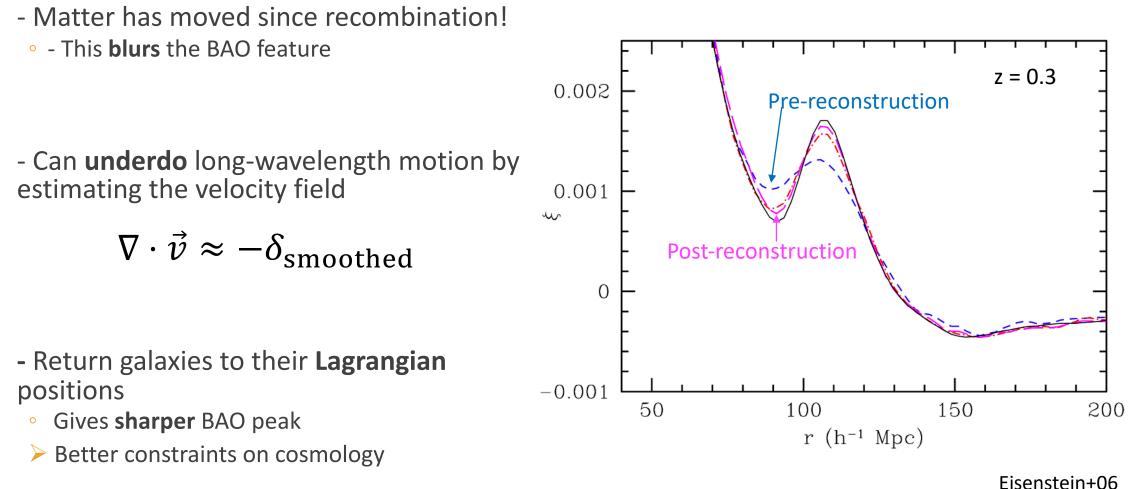
$$\alpha_{\parallel} = \frac{H^{\text{fid}}(z) r_s^{\text{fid}}(z_d)}{H(z) r_s(z_d)}$$

Fiducial cosmology

$$\alpha_{\perp} = \frac{D_A(z) r_s^{\text{fid}}(z_d)}{D_A^{\text{fid}}(z) r_s(z_d)}$$

True cosmology

BAO Reconstruction



Padamanbhan+12

Extracting $\{\alpha_{\perp}, \alpha_{\parallel}\}$

- Work in Fourier space with the power spectrum **monopole** and **quadrupole**

- Use linear theory model plus AP parameters

$$P_{
m fid}^{
m rec}(k,\mu) = \; \left[b + f \mu^2 \left(1 - W(k)
ight)
ight]^2 \; P_{
m nw}(k) \left[1 + \left(\mathcal{O}_{
m lin}(k) - 1
ight) e^{-k^2 \Sigma^2(\mu)}
ight]$$

Bias + smoothing No-wiggle power Suppressed wiggles

$$P_{\ell}^{\text{rec}}(k) \sim \int_{-1}^{1} d\mu P_{\text{fid}}^{\text{rec}} \left(k'(k), \mu'(\mu) \right) L_{\ell}(\mu) \longleftarrow \begin{array}{c} \text{Multipole} \\ \text{binning} \\ \text{AP parameters} \end{array}$$

- What about non-linear effects?

Extracting $\{\alpha_{\perp}, \alpha_{\parallel}\}$

- Previously;
- $\circ~$ Add ~ 10 free polynomial parameters to account for the unknown power spectrum shape
- Now;
- Use a theoretical error covariance

 $C^d \rightarrow C^d + C^e$

Data Covariance

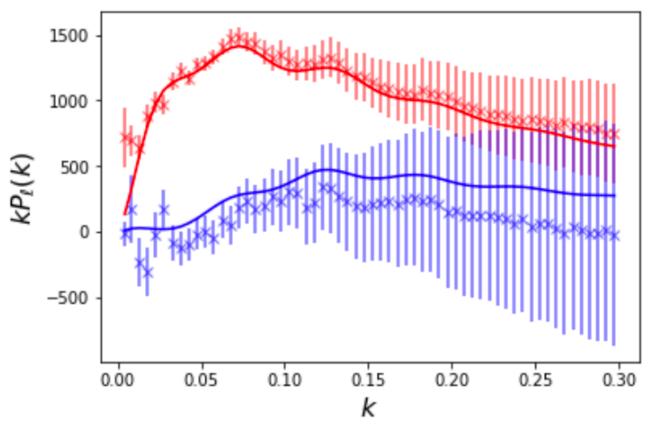
Error Covariance

• This has the amplitude of the non-linear corrections but is **correlated** -> can still measure BAO

Extracting $\{\alpha_{\perp}, \alpha_{\parallel}\}$

- This is robust and able to measure AP parameters into the non-linear regime

- Only **two** nuisance parameters; $\{b, \Sigma_{
m NL}\}$



Reconstructed Monopole Power

Reconstructed Quadrupole Power

Full-Shape (FS) Analysis

- Is there information in galaxy power spectra beyond the BAO peaks?

- Constrain cosmological parameters from the full shape of the unreconstructed spectrum

$$P_{g,\ell}(k) = P_{g,\ell}^{\text{tree}}(k) + P_{g,\ell}^{1-\text{loop}}(k) + P_{g,\ell}^{\text{noise}}(k) + P_{g,\ell}^{\text{ctr}}(k)$$

$$\underset{\text{Linear Theory}}{\text{Linear Theory}} \xrightarrow{1-\text{loop Perturbation}}_{\text{Theory}} \text{Shot-noise Counterterms}$$

$$\frac{Spectra}{\int_{0}^{100} \int_{0}^{100} \int_{0}^{100} \int_{0}^{100} \int_{0}^{1/2} \int_{0}^{1/$$

Combining FS and BAO Analyses

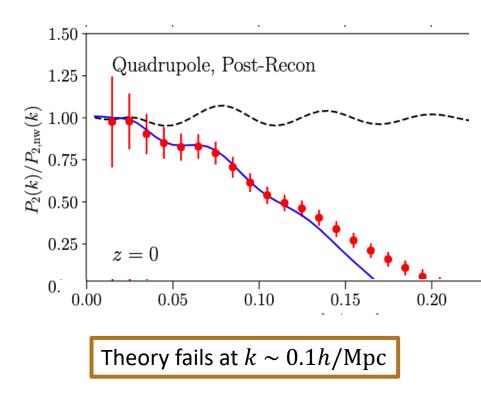
- Full Shape analysis places **strong** constraints on cosmology
- Apply this to **reconstructed** power spectra?

However;

- 1. Reconstruction degrades the broadband power spectrum shape
- 2. Different reconstruction methods need different theory models!
- 3. Significant dependence on modeling assumptions (Sherwin+18)

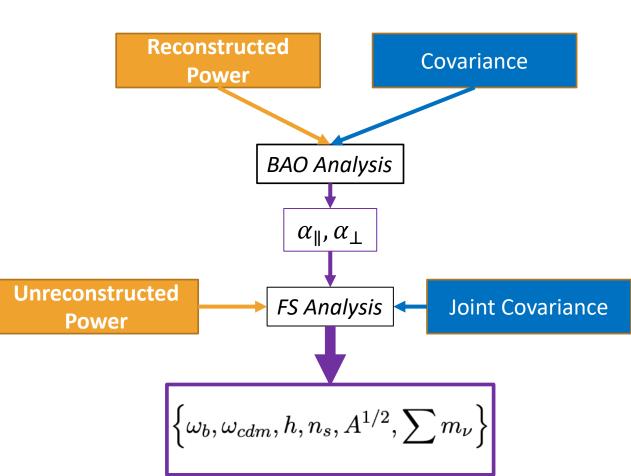
Modeling reconstructed spectra is difficult

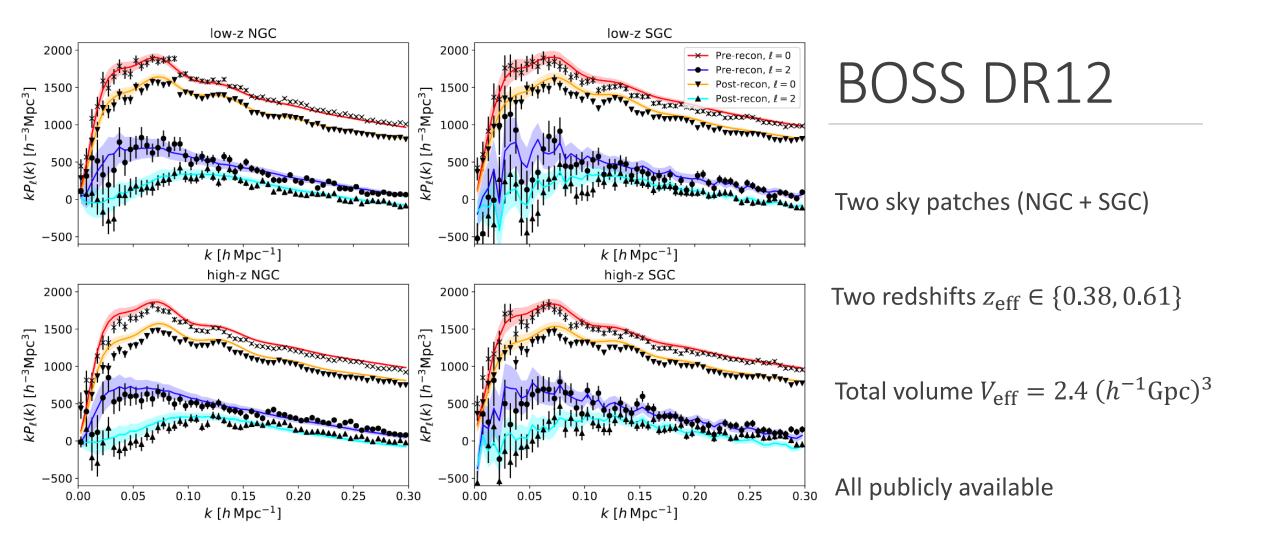
(Hikage+17,19, Chen+19)



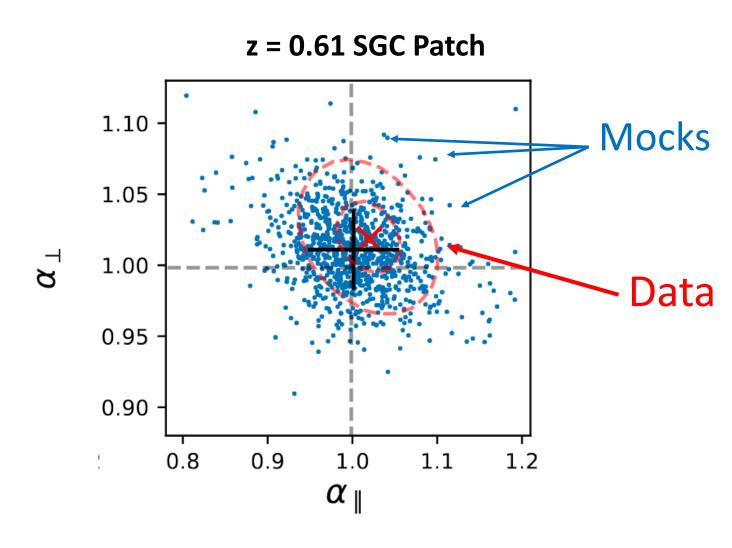
The Analysis Pipeline

- 1. Run **BAO** analysis on the reconstructed data to get **AP** parameters $\vec{\alpha}$
- 2. Generate joint covariance between AP parameters and $P_{\ell}^{unrec}(k)$
- 3. Run **FS analysis** on $\{P_{\ell}^{\text{unrec}}(k), \vec{\alpha}\}$





Alam+16, Philcox+20



Step 1: Measure AP Parameters

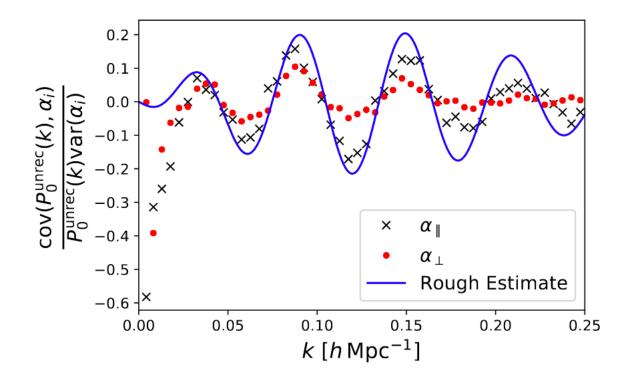
Use **linear + theoretical error** model

Constrain parameters via **MCMC** to get best-fit $\alpha_{\perp}, \alpha_{\parallel}$

Apply to Quick Particle Mesh mocks (Kitaura+15)

$$\operatorname{cov}\left(X_{a}, X_{b}\right) = \frac{1}{N_{\operatorname{mocks}}} \sum_{n=1}^{N_{\operatorname{mocks}}} \left(X_{a}^{(n)} - \overline{X}_{a}\right) \left(X_{b}^{(n)} - \overline{X}_{b}\right)$$

for $X = \{P_{0}^{\operatorname{unrec}}(k), P_{2}^{\operatorname{unrec}}(k), \alpha_{\parallel}, \alpha_{\perp}\}$



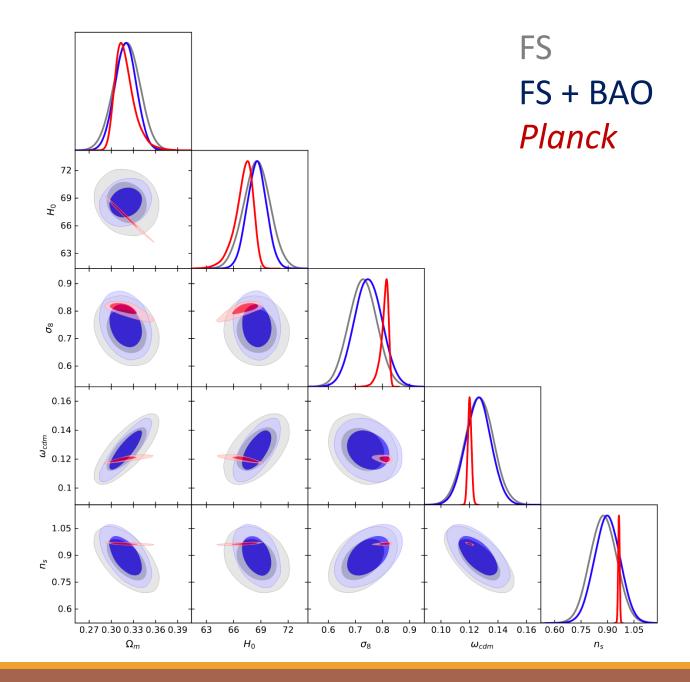
Step 2: Compute Covariances

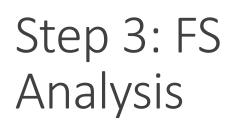
Need a **joint covariance** of spectra and **AP** parameters

Measure from 999 mocks

Could also use basic theory

Philcox+20





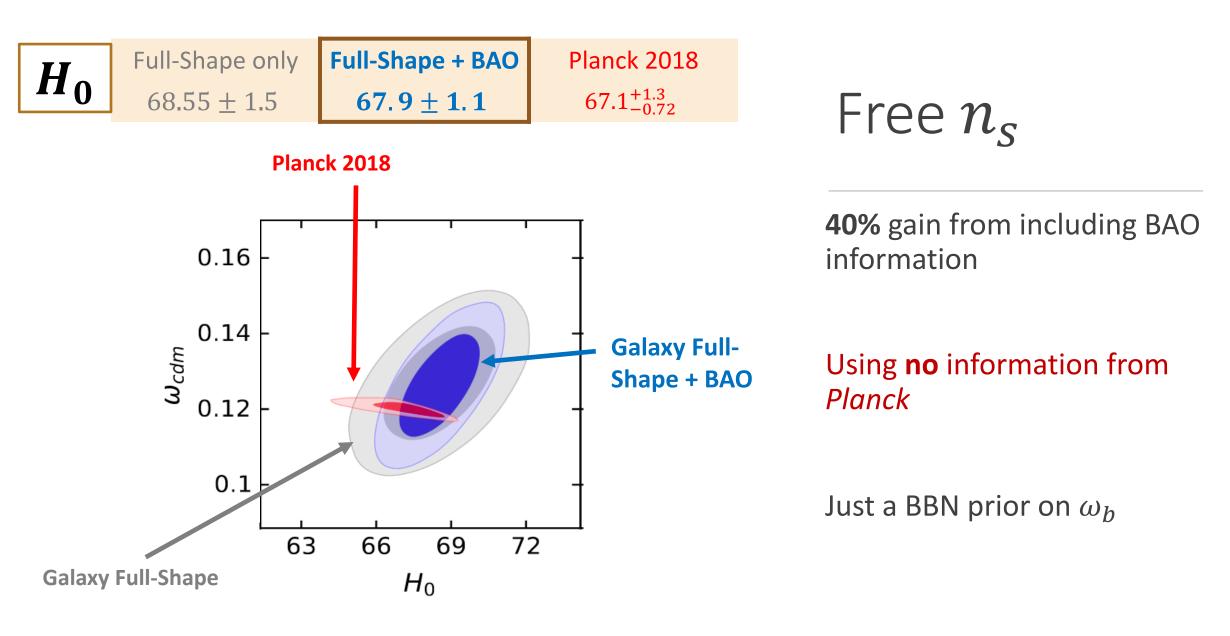
Use MCMC + Full-Shape likelihood in $\nu\Lambda$ CDM

Nuisance parameters:

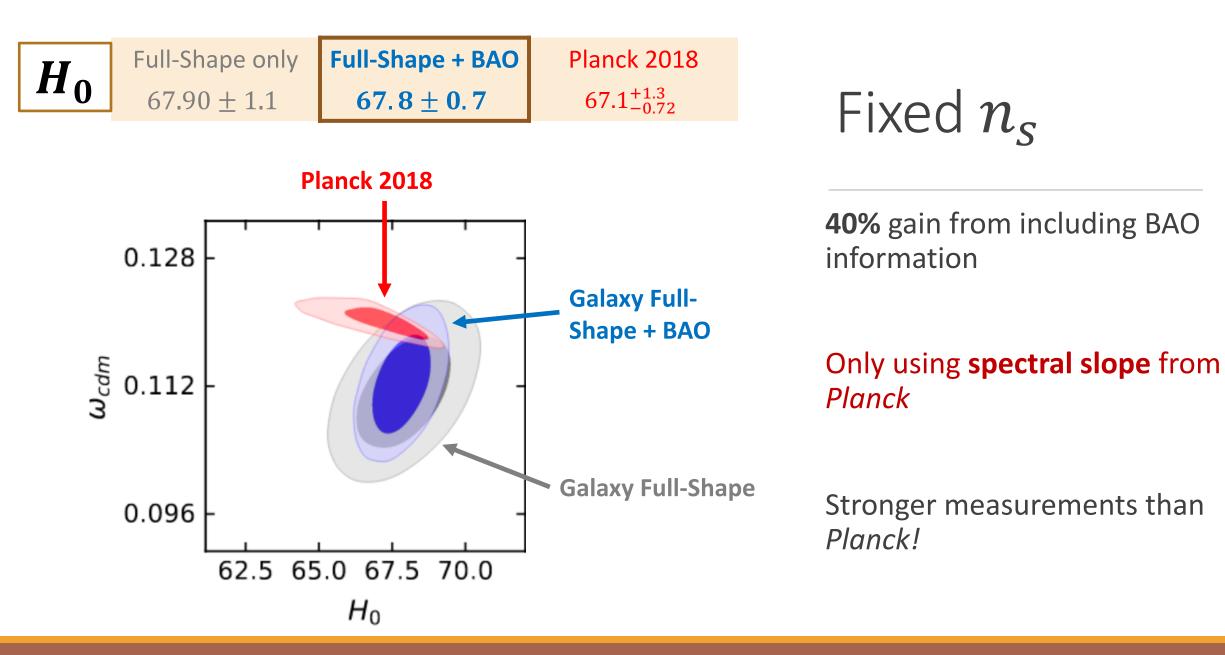
 $\{b_1,b_2,b_{\mathcal{G}_2},P_{\mathrm{shot}},c_0,c_2, ilde{c}\}$

Cosmological parameters

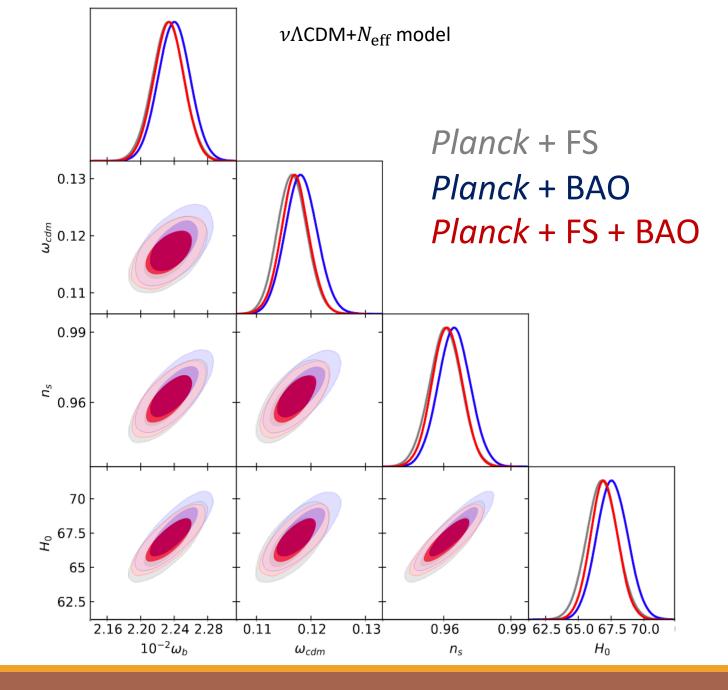
$$\left\{\omega_b,\omega_{cdm},h,n_s,A^{1/2},\sum m_{
u}
ight\}$$



Philcox+20



Philcox+20



Combination with *Planck*

BAO does **not** add extra information to *Planck*+FS analyses

Galaxy surveys **break** parameter **degeneracies**

Already broken by FS information!

BAO reconstruction will not be useful in the future

Conclusions

Combining Full-Shape and BAO information gives strong constraints on cosmology from galaxy surveys

Can robustly measure BAO via theoretical error, independent of reconstruction method

Sives a 1.6% constraint on H_0 at $z \sim 0.5$ assuming Λ CDM, **independent** of the CMB

Where is our Information Coming From?

Galaxy Surveys

- Full shape of galaxy power spectrum constrains ω_{cdm} , ω_b etc.

- This sets the **physical sound horizon** in ΛCDM

- Angular galaxy positions, especially the BAO scale, give H_0

CMB

- **Full shape** of CMB power spectrum constrains ω_{cdm} , ω_b etc.

- This sets the **physical sound horizon** in ΛCDM

- Angular CMB observations, especially the acoustic peaks, give H_0

`Early' or `Late' Measurements?

- Excluding the BBN prior, all our data comes from $z \sim 0.5$

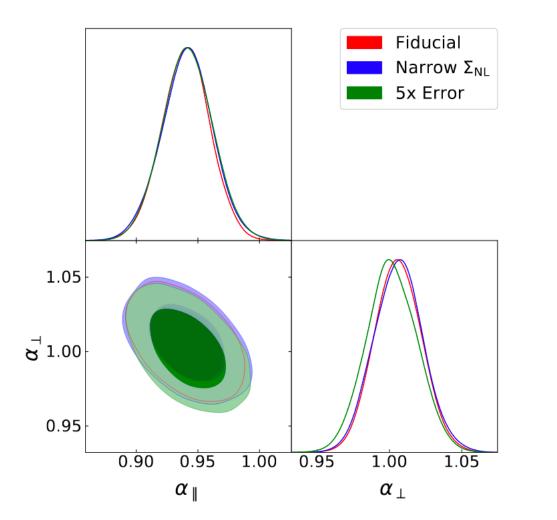
- But we use a cosmological model to generate $P_{lin}(k)$

- Our analysis encodes the **full** cosmological history since before **recombination**

- We are sensitive to new physics at z > 0.5

This is a measurement of H_0 at $z \sim 0.5$ within $\nu \Lambda CDM$

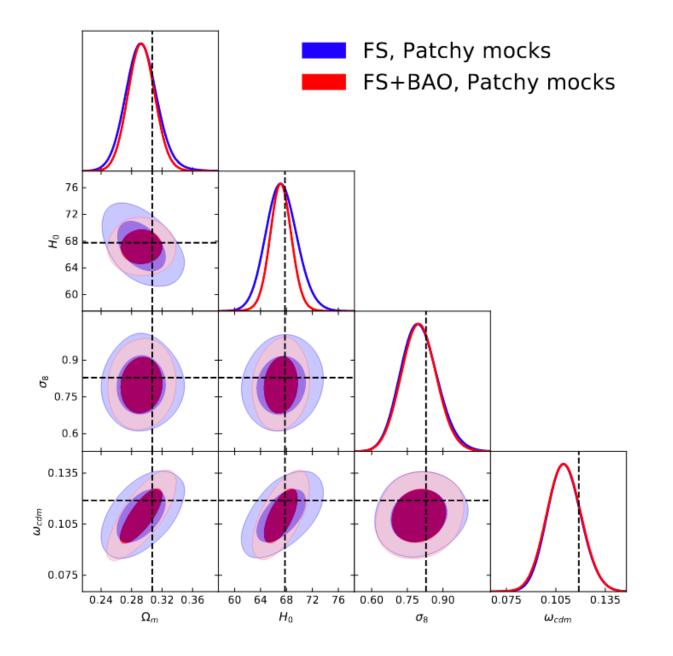
BAO Reconstruction Robustness



Test procedure by repeating with

- 1. A narrow prior on the non-linear damping scale $\Sigma_{\rm NL}$ (i.e. *fixed damping*)
- 2. Inflating the theoretical covariance error by 5^2

The analysis is robust

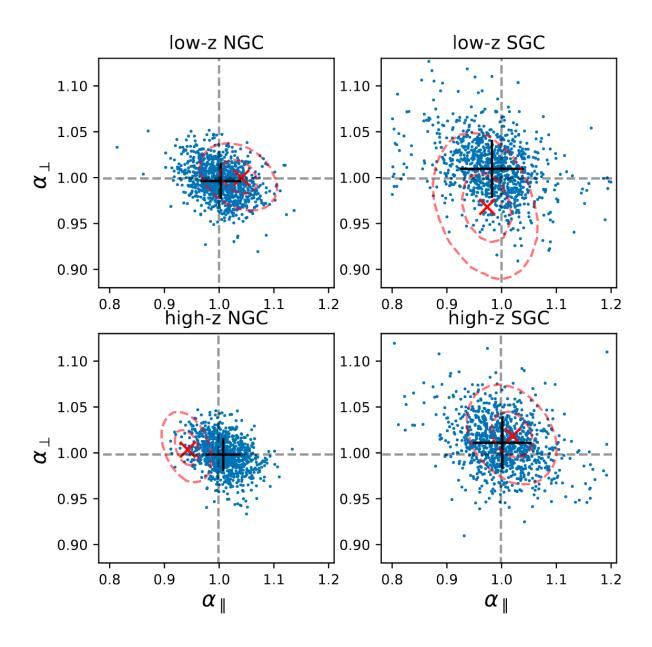


```
Tests on
Mocks
```

- Run FS and FS+BAO analyses on the **mean** of QPM mocks

- Do not expect perfect agreement since mocks generated with approximate gravity solver and HOD model.

- Results are $< 1\sigma$ consistent



All AP Parameters

Approximate Joint Covariance

$$egin{aligned} &\operatorname{cov}\left(P^{\mathrm{unrec}}(k,\mu),\hat{oldsymbol{lpha}}
ight) \equiv \left\langle \delta P^{\mathrm{unrec}}(k,\mu)\delta\hat{oldsymbol{lpha}}
ight
angle = \left\langle \left. rac{\partial P^{\mathrm{unrec}}(k,\mu)}{\partialoldsymbol{lpha}}
ightert_{oldsymbol{lpha}=oldsymbol{lpha}_{0}}\delta\hat{oldsymbol{lpha}}^{T}\delta\hat{oldsymbol{lpha}}
ight
angle \ &= \left. rac{\partial P^{\mathrm{unrec}}(k,\mu)}{\partialoldsymbol{lpha}}
ightert_{oldsymbol{lpha}=oldsymbol{lpha}_{0}}\cdot\operatorname{cov}(\hat{oldsymbol{lpha}})
ightert_{oldsymbol{lpha}=oldsymbol{lpha}_{0}}\delta\hat{oldsymbol{lpha}}^{T}\delta\hat{oldsymbol{lpha}}
ight
angle \end{aligned}$$

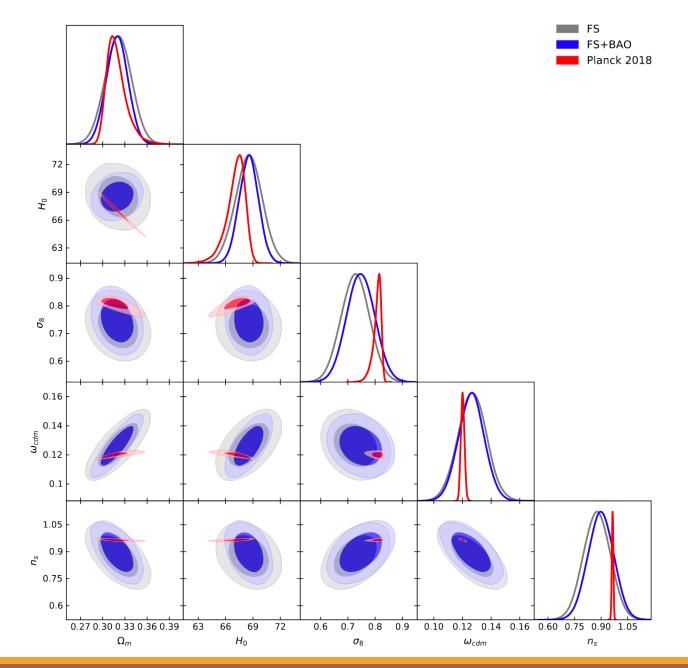
$$= \frac{\partial P^{\mathrm{unrec}}(k,\mu)}{\partial P^{\mathrm{rec}}(k,\mu)} \cdot \frac{\partial P^{\mathrm{rec}}_w(k,\mu)}{\partial \boldsymbol{\alpha}} \cdot \mathrm{cov}(\hat{\boldsymbol{\alpha}})$$

$$P_w(k;\alpha) \approx 0.05 P_{nw}(k) \sin\left(\frac{k\ell_{\rm BAO}}{\alpha}\right) e^{-k^2 \left(\Sigma_{\rm NL}^2 + \Sigma_{\rm Silk}^2\right)}$$

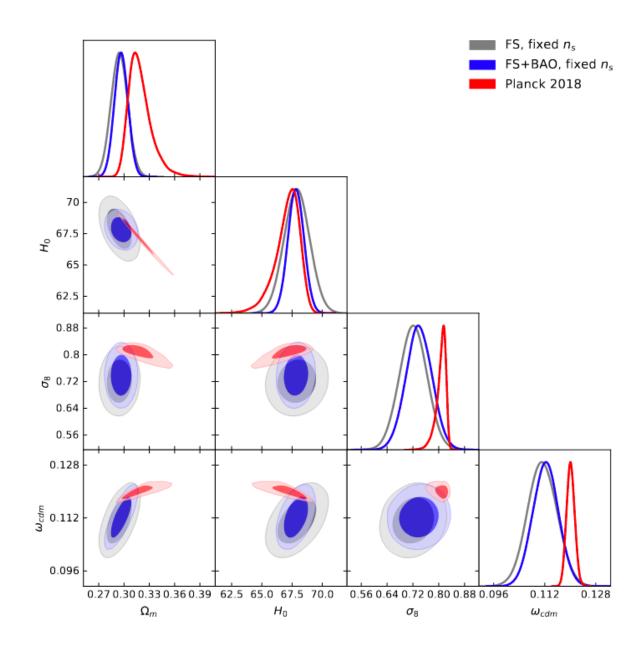
$$\frac{\operatorname{cov}(P^{\operatorname{unrec}}(k),\hat{\alpha})}{P^{\operatorname{unrec}}(k)\operatorname{var}(\hat{\alpha})} = \frac{\partial \log P^{\operatorname{unrec}}(k)}{\partial \alpha} \approx -0.05 \frac{k\ell_{\mathrm{BAO}}}{\alpha^2} \cos\left(\frac{k\ell_{\mathrm{BAO}}}{\alpha}\right) e^{-k^2 \left(\Sigma_{\mathrm{NL}}^2 + \Sigma_{\mathrm{Silk}}^2\right)}$$

	base $\nu \Lambda \text{CDM}$		base $ u \Lambda { m CDM} + { m fixed} n_s$	
Parameter	FS	FS+BAO	FS	FS+BAO
ω_{cdm}	$0.1265\substack{+0.01\\-0.01}$	$0.1259\substack{+0.009\\-0.0093}$	$0.1113\substack{+0.0047\\-0.0048}$	$0.1121\substack{+0.0041\\-0.0041}$
n_s	$0.8791\substack{+0.081 \\ -0.076}$	$0.9003\substack{+0.076\\-0.071}$	—	_
H_0	$68.55^{+1.5}_{-1.5}$	$68.55^{+1.1}_{-1.1}$	$67.90^{+1.1}_{-1.1}$	$67.81\substack{+0.68 \\ -0.69}$
σ_8	$0.7285\substack{+0.055\\-0.053}$	$0.7492\substack{+0.053 \\ -0.052}$	$0.7215\substack{+0.044\\-0.044}$	$0.7393\substack{+0.04\\-0.041}$
Ω_m	$0.3203\substack{+0.018\\-0.019}$	$0.3189\substack{+0.015\-0.015}$	$0.2945\substack{+0.01\\-0.01}$	$0.2962\substack{+0.0082\\-0.008}$

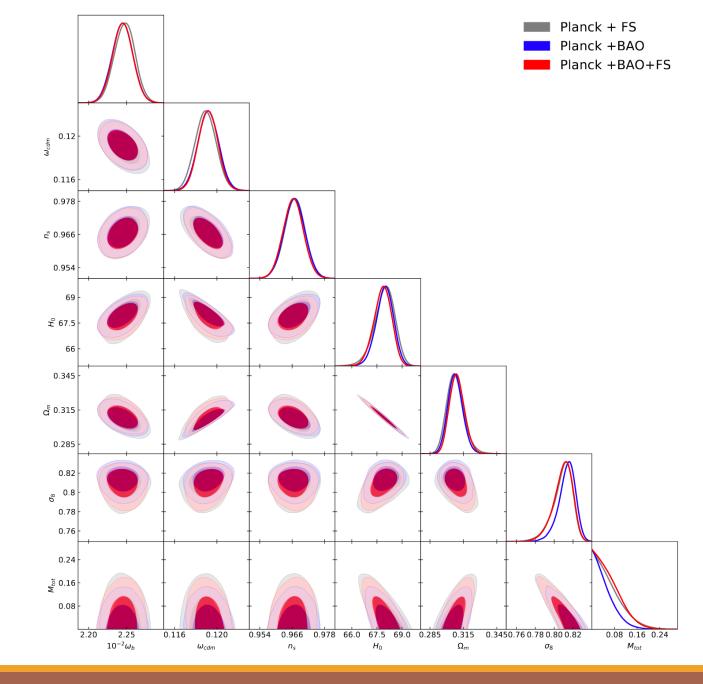
Full Constraints from Galaxy Surveys



Free *n_s* contours

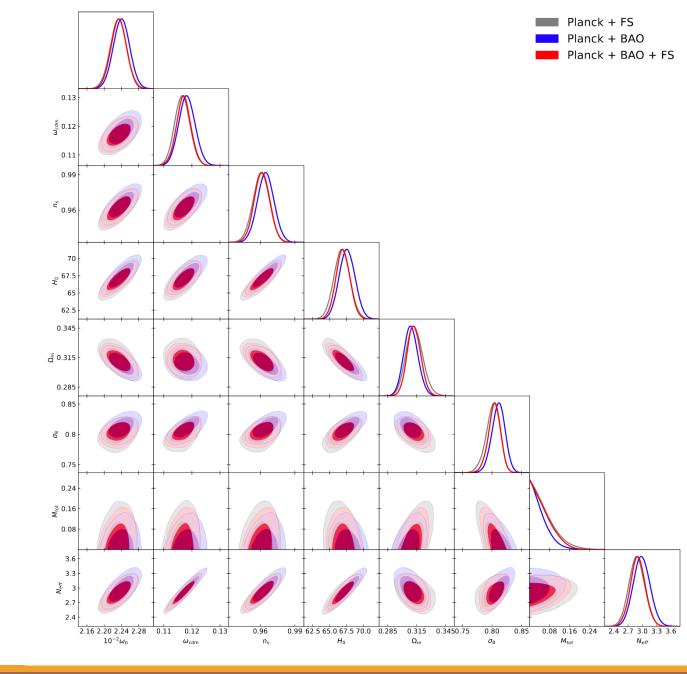


Fixed *n_s* contours



Planck+BOSS

 $\nu\Lambda$ CDM model



Planck+BOSS

 $\nu\Lambda CDM + N_{eff}$ model