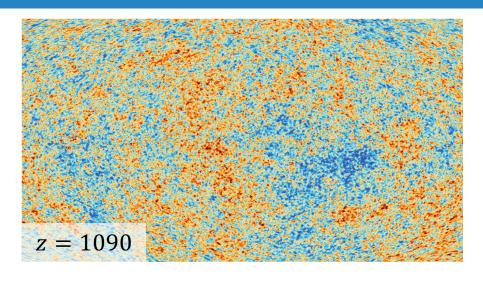


Large Scale Structure Beyond the Two-Point Function

Oliver Philcox (Princeton / IAS)

December 2021

THE EARLY UNIVERSE IS GAUSSIAN



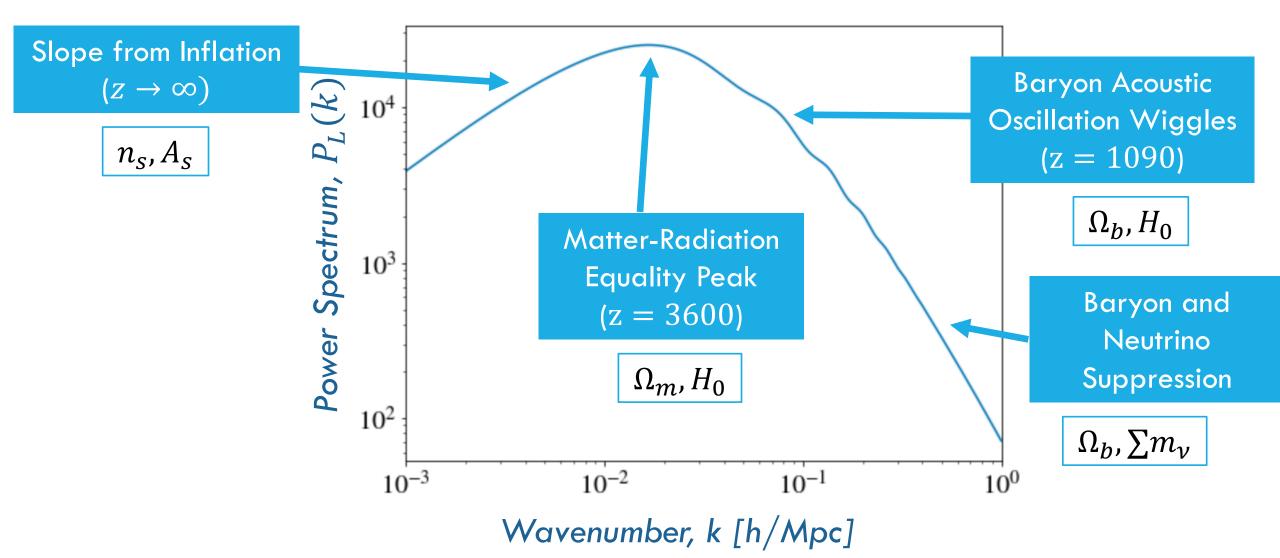
$$\delta(\mathbf{k}) \sim \mathcal{N}\left(0, P_L(\mathbf{k})\right)$$

All information contained in the power spectrum

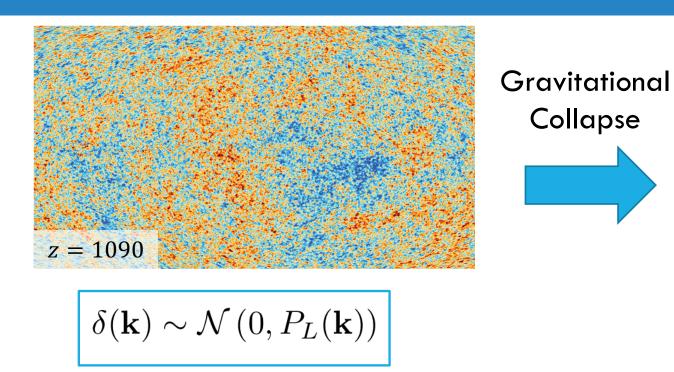
No higher order statistics needed!

LINEAR POWER SPECTRUM

$\langle \delta(\mathbf{k})\delta(\mathbf{k}')\rangle = (2\pi)^3 \delta_{\rm D} \left(\mathbf{k} + \mathbf{k}'\right) P_L(\mathbf{k})$



THE LATE UNIVERSE IS NOT GAUSSIAN



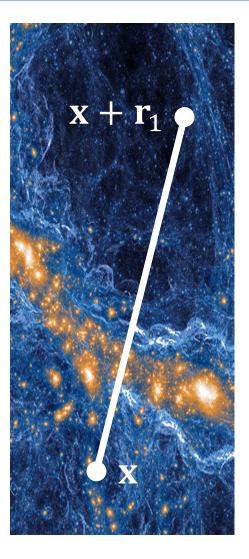
- All information contained in the power spectrum
- **No** higher order statistics needed!

z = 0

$$\delta(\mathbf{k}) \not\sim \mathcal{N}\left(0, P_L(\mathbf{k})\right)$$

- Not all information contained in the power spectrum
- > Higher-order statistics needed!

NON-GAUSSIAN DENSITY \Rightarrow NON-GAUSSIAN STATISTICS

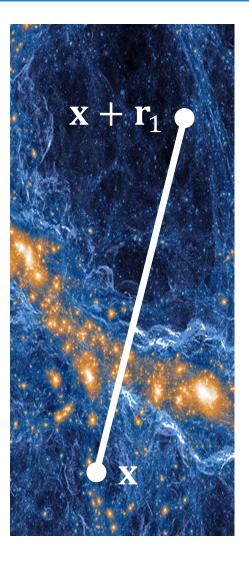


Gaussian

- 1. Power Spectrum:
 - $P(\mathbf{k}_1) = \langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \rangle'$
- 2. 2-Point Correlation Function:

 $\xi(\mathbf{r}_1) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}_1) \rangle$

NON-GAUSSIAN DENSITY \Rightarrow NON-GAUSSIAN STATISTICS



Gaussian

- 1. Power Spectrum:
- $P(\mathbf{k}_1) = \langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \rangle'$
- 2. 2-Point Correlation Function:

$$\xi(\mathbf{r}_1) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}_1) \rangle$$

Non-Gaussian

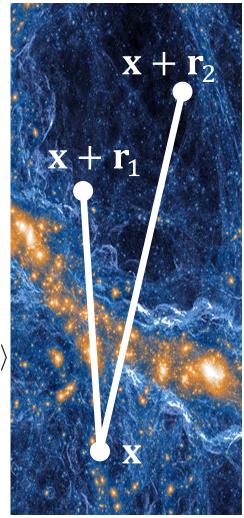
1. Bispectrum:

$$B(\mathbf{k}_1,\mathbf{k}_2) = \langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3) \rangle'$$

2. 3-Point Correlation Function:

$$\zeta_3(\mathbf{r}_1, \mathbf{r}_2) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}_1) \delta(\mathbf{x} + \mathbf{r}_2) \rangle$$

And beyond...



WHAT MAKES UP THE BISPECTRUM?

$$B_g(\mathbf{k}_1, \mathbf{k}_2) = \left[2b_1^3 F_2(\mathbf{k}_1, \mathbf{k}_2) + b_2 b_1^2 + 2b_{s^2} b_1^2 \left(\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_2 - 1/3 \right) \right] P_L(k_1) P_L(k_2) + 2 \text{ perms.}$$

The galaxy bispectrum depends on galaxy formation physics, gravity, and early-Universe cosmology.

 \triangleright To obtain **all** the large-scale information in the initial conditions, we need: *

- Power Spectra / 2-Point Functions
- Bispectra / 3-Point Functions
- Trispectra / 4-Point Functions

 $\sim P_L(k)$ $\sim P_L^2(k)$ $\sim P_L^3(k)$

• etc.

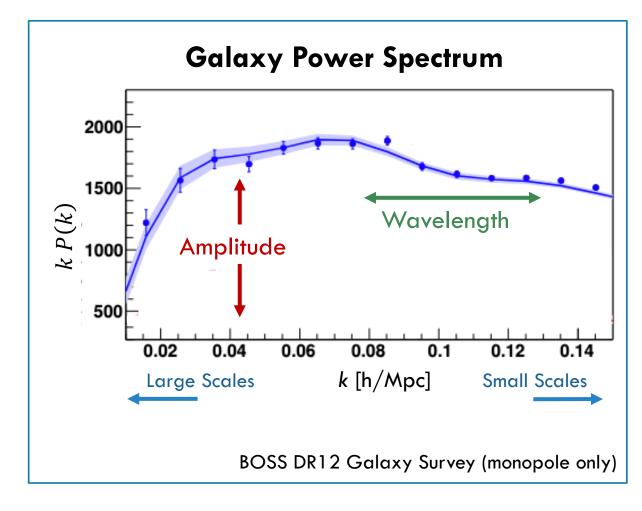
*ignoring higher-order perturbative effects, redshift-space distortions, renormalization, etc. e.g. lvanov+21

Analyze the galaxy power spectrum using a scaling analysis

This measures:

- Overall **amplitude** (= primordial amplitude)
- **Wiggle** positions (= BAO feature)

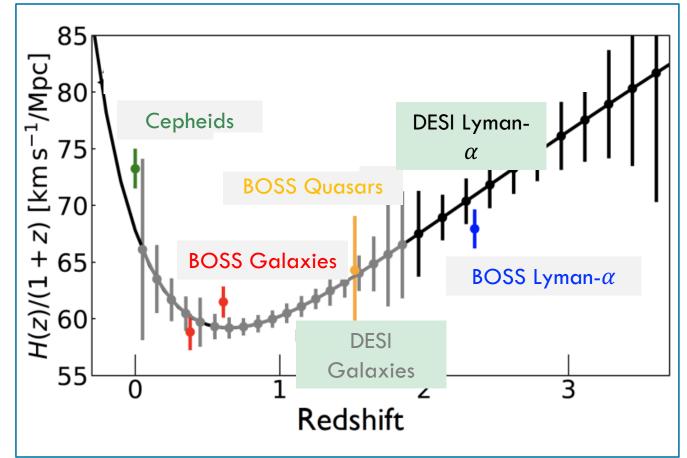
Robust way to constrain growth rate and expansion history H(z)



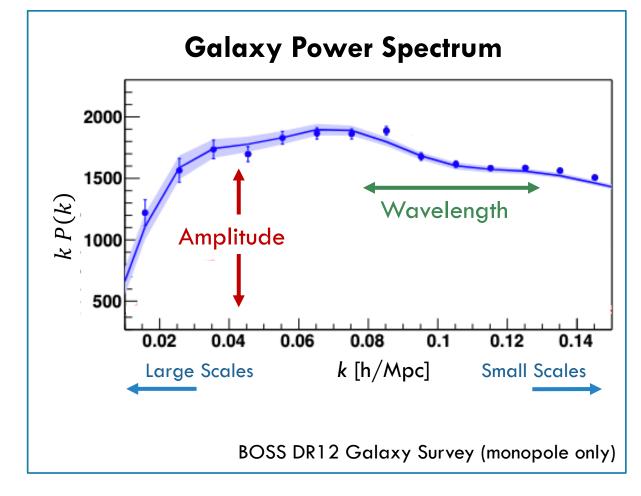
Analyze the galaxy power spectrum using a scaling analysis

Measure wiggle positions (= BAO feature) and overall amplitude

Robust way to constrain growth rate and expansion history H(z)

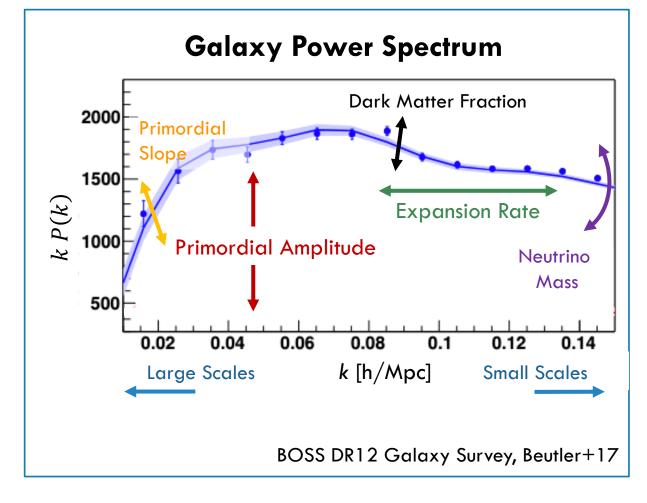


> This is not all the available information!



 \triangleright This is not all the available information!

Measure parameters directly from the full shape of the galaxy power spectrum

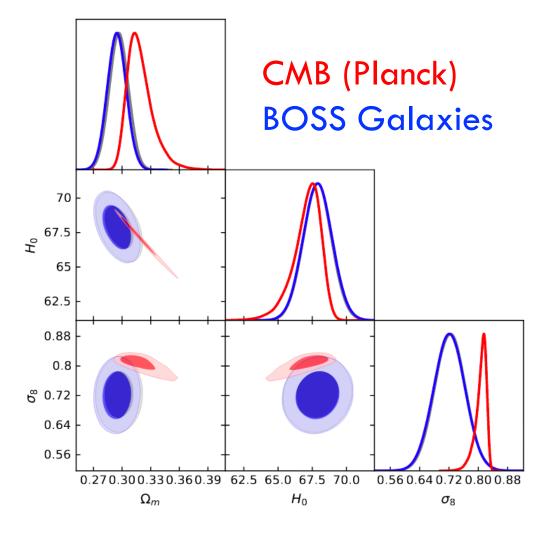


 \triangleright This is not all the available information!

Measure parameters directly from the full shape of the galaxy power spectrum

Constrain parameters in new ways e.g. expansion rate from equality scale. [Farren, Philcox & Sherwin (in prep.)]

Can we go **beyond** the power spectrum?



12 e.g. Ivanov+19,20, d'Amico+19,20, **Philcox**+20ab, Chen+21, Kobayashi+21

WHY USE HIGHER-ORDER STATISTICS?

Sharpen parameter constraints!

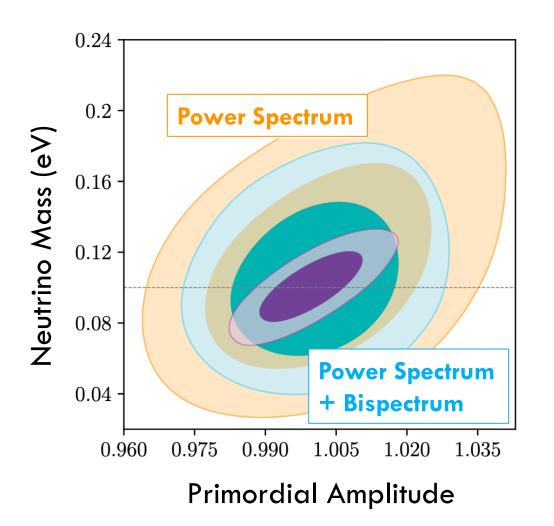
Break parameter **degeneracies**!

[e.g. $P_g \sim b_1^2 \sigma_8^2$, $B_g \sim b_1^3 \sigma_8^4$]

Euclid Forecast

 \triangleright Bispectrum improves constraints by pprox 40%

 $\triangleright 1\sigma$ constraint of $\sigma_{M_{\mathcal{V}}} = 0.013 \text{ eV}$ [including Planck]



WHY USE HIGHER-ORDER STATISTICS?

14

Sharpen parameter constraints!

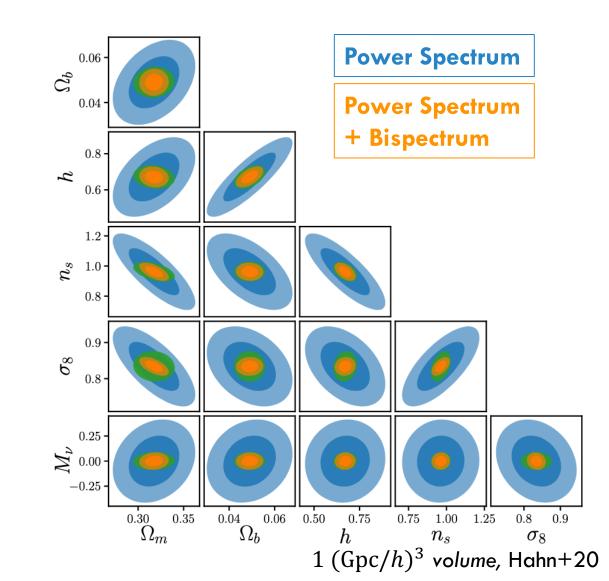
Break parameter **degeneracies**!

[e.g. $P_g \sim b_1^2 \sigma_8^2$, $B_g \sim b_1^3 \sigma_8^4$]

Simulation-Based Forecast

 \triangleright Galaxy Bispectrum improves constraints by $> 2 \times$

 \triangleright Neutrino constraint improves by 5imes



NON-GAUSSIAN INFLATION

Are the primordial perturbations **Gaussian** and **adiabatic**?

Standard Model of Inflation:

 \triangleright Scalar field ϕ rolling down a potential $V(\phi)$

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - V(\phi) \right]$$

Gravity Kinetic Energy Potential

> Action, S, encodes statistics of the primordial curvature perturbations, ζ

Second Order \Rightarrow Power Spectrum

$$S^{(2)} \Rightarrow P_{\zeta}(k) \approx A_s k^{n_s - 4}$$

Third Order \Rightarrow Bispectrum

$$S^{(3)} \Rightarrow B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\mathrm{NL}} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$$

Generates **non-Gaussianity** proportional to $f_{\rm NL}$

NON-GAUSSIAN INFLATION

$$B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$$

The **consistency condition** states that

$$\lim_{k_1 \to 0} B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) = (1 - n_s) P_{\zeta}(k_1) P_{\zeta}(k_2)$$

$$f_{\mathrm{NL}} \sim (1 - n_s) \ll 1 \quad \text{Non-Gaussianity is too}$$
small to be detected!

Non-standard inflation can beat this, e.g.

- Multifield Inflation [Local Bispectrum]
- New Kinetic Terms [Equilateral Bispectrum]
- New Vacuum States [Folded Bispectrum]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}\partial^{\mu}\phi \partial_{\mu}\phi - V(\phi) \right]$$

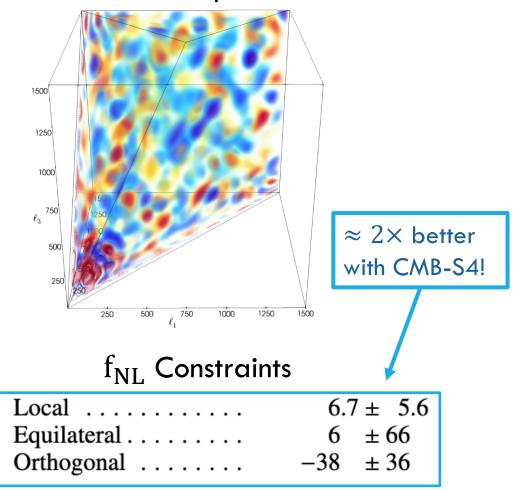
Planck 2018 IX

NON-GAUSSIAN INFLATION

How do we measure this?

1. CMB Bispectrum

Planck TTT Bispectrum



 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

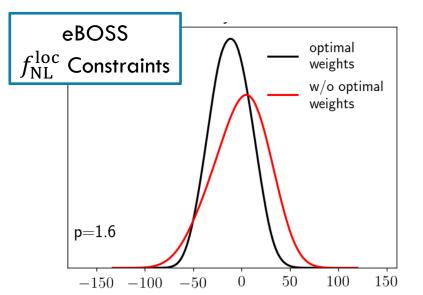
NON-GAUSSIAN INFLATION

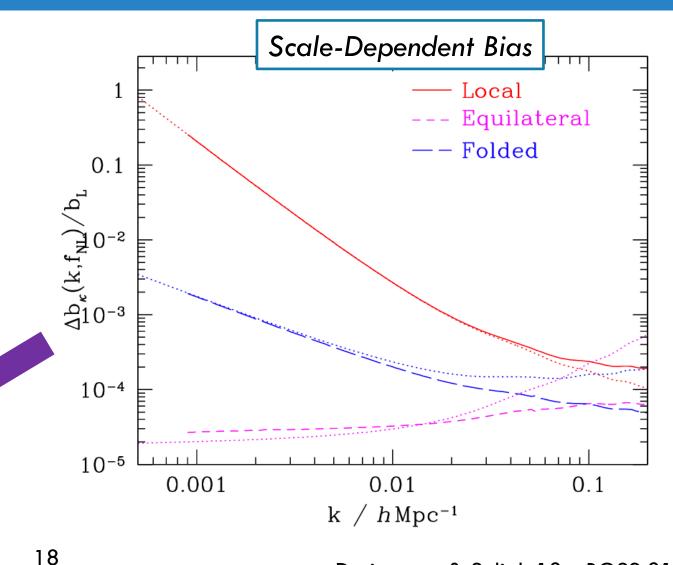
 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

How do we measure this?

1. CMB Bispectrum

2. Galaxy Power Spectrum

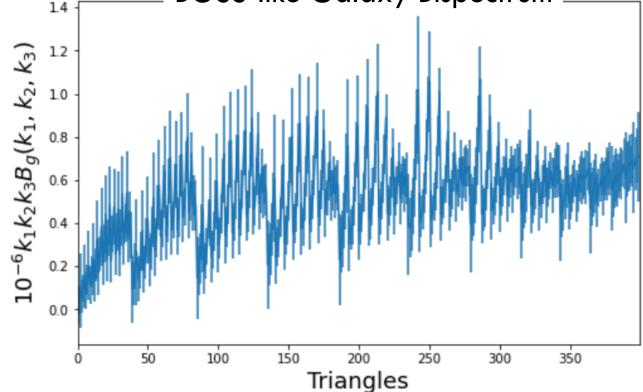




Desjacques & Seljak 10, eBOSS 21

BOSS-like Galaxy Bispectrum

 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\mathrm{NL}} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$



NON-GAUSSIAN INFLATION

How do we measure this?

CMB Bispectrum

2. **Galaxy Power Spectrum**

Galaxy Bispectrum 3.

lvanov, Philcox+21, Philcox & lvanov (in prep.)

CHERN-SIMONS INTERACTIONS VIOLATE PARITY

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}\partial^\mu \phi \partial_\mu \phi - V(\phi) - \frac{1}{4}f(\phi)F_{\mu\nu}F^{\mu\nu} + \frac{\gamma}{4}f(\phi)F_{\mu\nu}\tilde{F}^{\mu\nu} \right]$$

▷ Add a **gauge field** A_{μ} to the inflationary action, via $F_{\mu\nu} = \partial_{\nu}A_{\mu} - \partial_{\mu}A_{\nu}$

 \triangleright This can include a Chern-Simons coupling to the (pseudo-)scalar ϕ [motivated by baryogenesis]

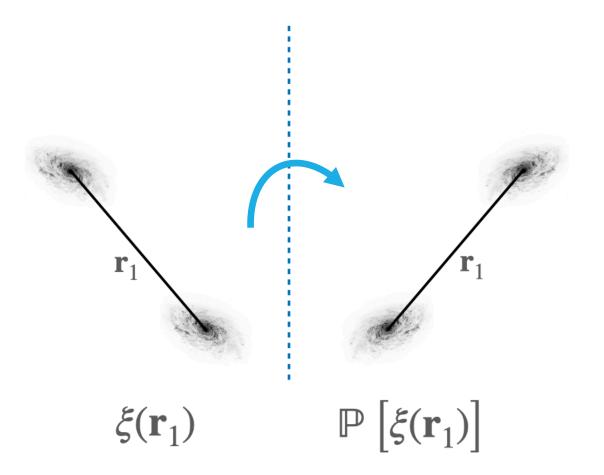
 $ightarrow f(\phi)F_{\mu\nu}\tilde{F}^{\mu\nu}$ violates **parity symmetry** \Rightarrow parity-violating correlators!

Where should we look for these signatures?

THE 2PCF + 3PCF ARE NOT SENSITIVE TO PARITY

2-Point Correlation Function (2PCF):

Parity Inversion = Rotation



21

Lue+98, Jeong+12, Shiraishi 16, Cahn+21, **Philcox** (in prep.)

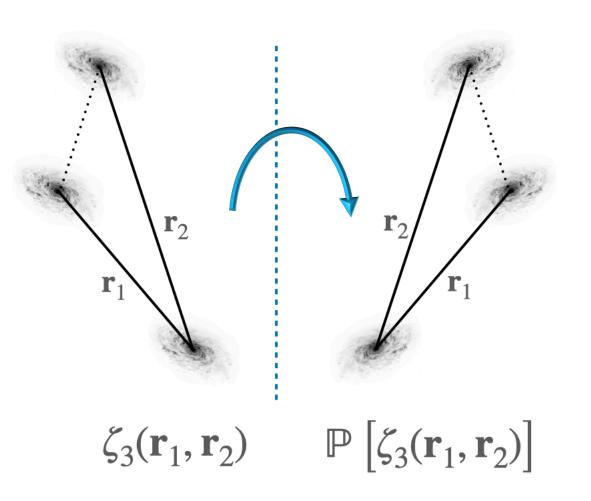
THE 2PCF + 3PCF ARE NOT SENSITIVE TO PARITY

2-Point Correlation Function (2PCF):

Parity Inversion = Rotation

3-Point Correlation Function (3PCF):

Parity Inversion = Rotation



22

Lue+98, Jeong+12, Shiraishi 16, Cahn+21, Philcox (in prep.)

THE 2PCF + 3PCF ARE NOT SENSITIVE TO PARITY

2-Point Correlation Function (2PCF):

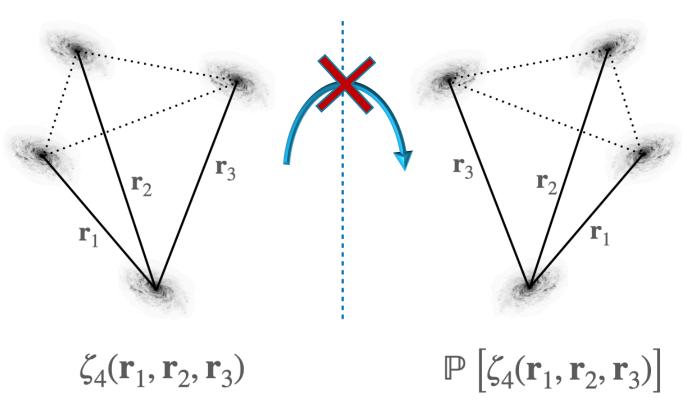
Parity Inversion = Rotation

3-Point Correlation Function (3PCF):

Parity Inversion = Rotation

4-Point Correlation Function (4PCF):

Parity Inversion \neq Rotation



Lue+98, Jeong+12, Shiraishi 16, Cahn+21, **Philcox** (in prep.)

WHY USE HIGHER-ORDER STATISTICS?

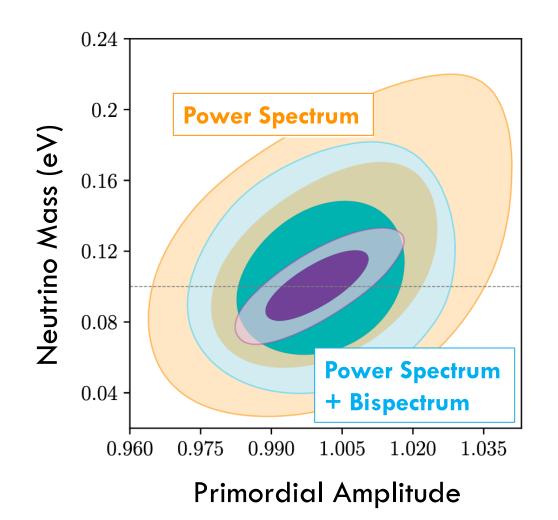
Sharpen parameter constraints!

Break parameter **degeneracies**!

Test non-standard physics models!

Why Use Large Scale Structure?

- Signal-to-Noise is **cubic** in number of modes unlike CMB
- New physics constraints **don't** dilute with redshift



HOW TO MEASURE A BISPECTRUM

$$\hat{B}_{g}(k_{1},k_{2},k_{3}) = \int_{\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}\in\text{bins}} \delta_{g}(\mathbf{k}_{1})\delta_{g}(\mathbf{k}_{2})\delta_{g}(\mathbf{k}_{3})(2\pi)^{3}\delta_{\text{D}}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right)$$

Problem: We don't measure the density field directly.

$$\delta_g(\mathbf{r}) \to W(\mathbf{r})\delta_g(\mathbf{r}) \qquad \delta_g(\mathbf{k}) \to \int \frac{d\mathbf{p}}{(2\pi)^3} W(\mathbf{k} - \mathbf{p})\delta_g(\mathbf{p})$$

Window Function

The measured bispectrum is a triple convolution

$$B_g(\mathbf{k}_1, \mathbf{k}_2) \to \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

Solution: Convolve the theory model too

Survey Window Function

CONVOLUTION IS EXPENSIVE

$$B_g^{\text{win}}(\mathbf{k}_1, \mathbf{k}_2) = \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

> Window convolution is too costly to do repeatedly!

Common approximation: apply the window **only** to the power spectrum

 $B_g(\mathbf{k}_1, \mathbf{k}_2) \supset P_L(k_1) P_L(k_2)$

But:

- This gives systematic errors on large scales
- Spectra cannot be used to search for new physics!

BISPECTRA WITHOUT WINDOWS

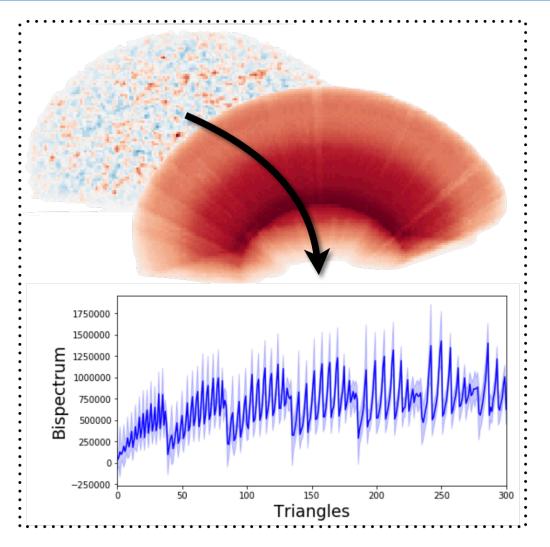
Alternatively: estimate the unwindowed bispectrum directly

 $B_g^{\min}(\mathbf{k}_1, \mathbf{k}_2) = \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$

Derive a maximum-likelihood estimator for the true bispectrum

Effectively **deconvolves** the window

$$abla_{B_g} L[\text{data}|B_g] = 0 \quad \Rightarrow \quad \widehat{B}_g = \cdots$$



27

BISPECTRA WITHOUT WINDOWS

New Approach

 \triangleright

Start from the **likelihood** for data **d**, using an Edgeworth expansion

$$L[\mathbf{d}](\mathbf{b}) = L_G[\mathbf{d}](\mathbf{b}) \left[1 + \frac{1}{3!} \mathsf{B}^{ijk} \left\{ \left[\mathsf{C}^{-1} \mathbf{d} \right]_i \left[\mathsf{C}^{-1} \mathbf{d} \right]_j \left[\mathsf{C}^{-1} \mathbf{d} \right]_k - \left(\mathsf{C}^{-1}_{ij} d_k + 2 \text{ perms.} \right) \right\} + \cdots \right]$$

Gaussian Piece Three-Point Function, $\mathsf{B}^{ijk} \equiv \langle d^i d^j d^k \rangle$ Covariance, $\mathsf{C}^{ij} = \langle d^i d^j \rangle$
This depends on survey geometry through C^{ij} and bispectrum through B^{ijk} $\nabla_{\mathbf{b}} \log L[\mathbf{d}](\mathbf{b}) = \mathbf{0}$

Optimize for true bispectrum, b:

$$\hat{b}^{\rm ML}_{\alpha} = \sum_{\beta} F^{-1,\rm ML}_{\alpha\beta} \hat{q}^{\rm ML}_{\beta},$$

$$\hat{q}_{\alpha}^{\mathrm{ML}} = \frac{1}{6} \mathsf{B}_{,\alpha}^{ijk} \left[\mathsf{C}^{-1} \mathbf{d} \right]_{i} \left(\left[\mathsf{C}^{-1} \mathbf{d} \right]_{j} \left[\mathsf{C}^{-1} \mathbf{d} \right]_{k} - 3\mathsf{C}_{jk}^{-1} \right)$$

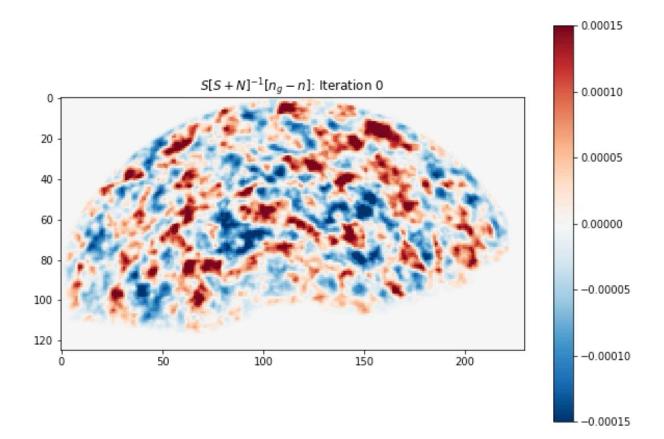
Cubic Estimator

$$\label{eq:F_alpha} \left| F^{\mathrm{ML}}_{\alpha\beta} = \frac{1}{6} \mathsf{B}^{ijk}_{,\alpha} \mathsf{B}^{lmn}_{,\beta} \mathsf{C}^{-1}_{il} \mathsf{C}^{-1}_{jm} \mathsf{C}^{-1}_{kn}, \right.$$

Fisher Matrix

INVERSE VARIANCE WEIGHTING

Compute $C^{-1}d$ iteratively via conjugate gradient descent

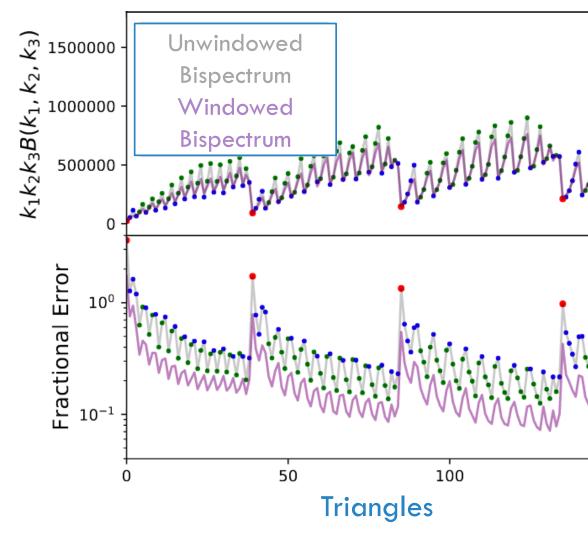


BISPECTRA WITHOUT WINDOWS

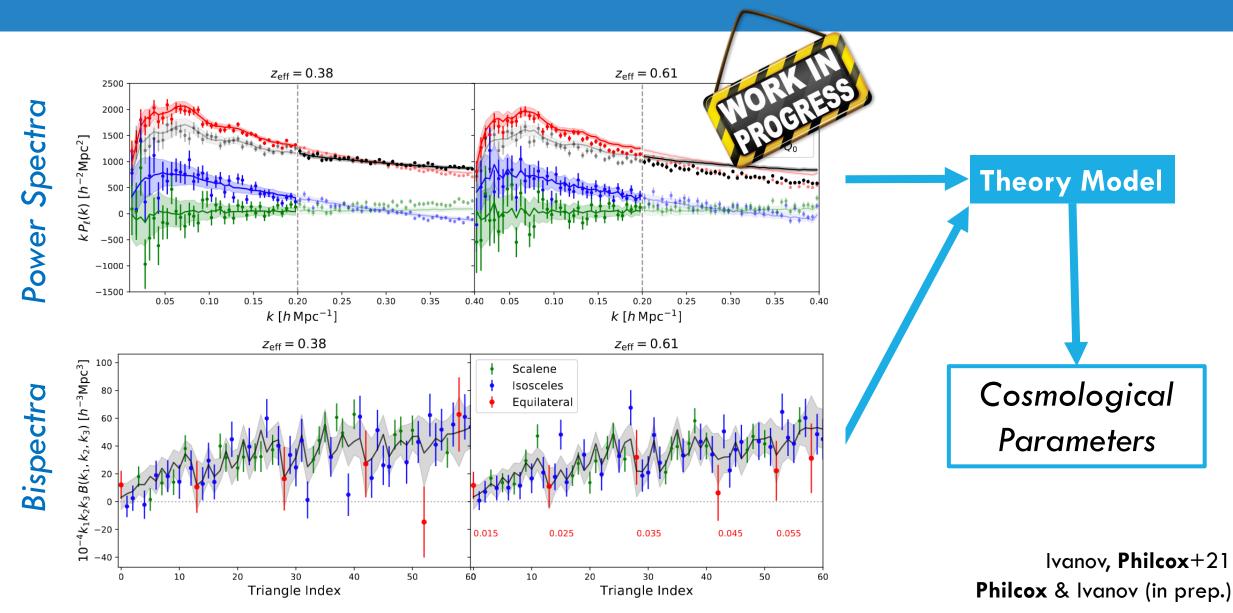
Properties of the **cubic estimator**:

- 1. Unbiased
- 2. Minimum variance [as $B(k_1, k_2, k_3) \rightarrow 0$]
- 3. Window-free [effectively a deconvolution]

Requires various tricks for dealing with high-dimensional data [e.g. conjugate gradient descent, Monte Carlo estimation etc.]



BOSS WITHOUT WINDOWS



WHAT WILL WE MEASURE?

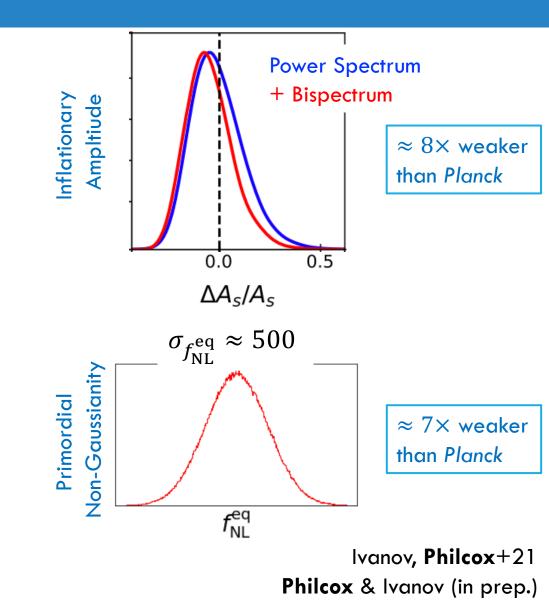
Tighter constraints on cosmological and galaxy formation parameters

 $ightarrow \sigma_8$ improves by 10%

▷ Tidal bias improves by 50%

Bounds on all flavors of Primordial Non-Gaussianity

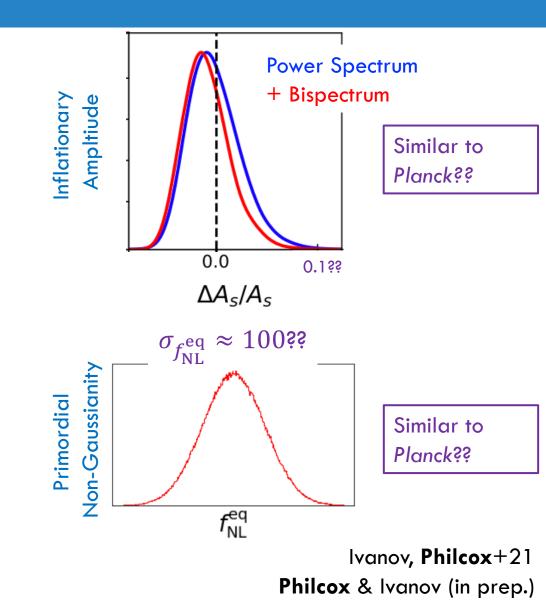
First equilateral-type measurement from LSS



WHAT'S NEXT FOR BISPECTRA?

- Improve bispectrum modeling
- ▷ Higher-order perturbation theory
- > Add **redshift-space** information
- Better treatment of fingers-of-God
- > Apply to **DESI** data
 - Pipelines already available and tested
 - \triangleright Expect $O(5) \times$ stronger constraints

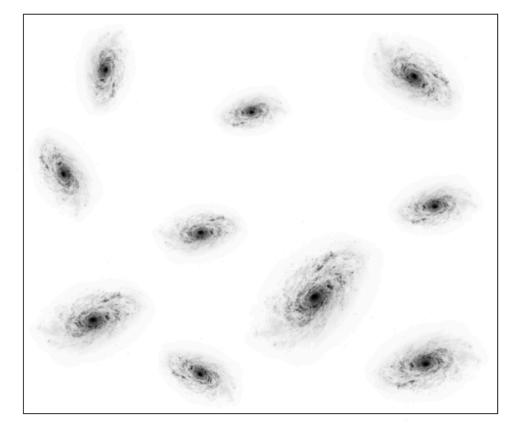
33



HOW TO MEASURE A CORRELATION FUNCTION

$$\hat{\zeta}_{g,4}(r_1, r_2, r_3, \hat{\mathbf{r}}_1 \cdot \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_1 \cdot \hat{\mathbf{r}}_3, \hat{\mathbf{r}}_2 \cdot \hat{\mathbf{r}}_3) = \int \frac{d\mathbf{x}}{V} \int_{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 \in \text{bins}} \delta_g(\mathbf{x}) \delta_g(\mathbf{x} + \mathbf{r}_1) \delta_g(\mathbf{x} + \mathbf{r}_2) \delta_g(\mathbf{x} + \mathbf{r}_3)$$

Measuring the 4PCF involves counting **quadruplets** of galaxies



HOW TO MEASURE A CORRELATION FUNCTION

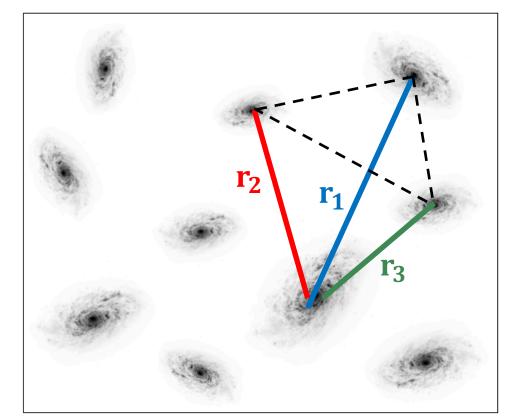
$$\hat{\zeta}_{g,4}(r_1, r_2, r_3, \hat{\mathbf{r}}_1 \cdot \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_1 \cdot \hat{\mathbf{r}}_3, \hat{\mathbf{r}}_2 \cdot \hat{\mathbf{r}}_3) = \int \frac{d\mathbf{x}}{V} \int_{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 \in \text{bins}} \delta_g(\mathbf{x}) \delta_g(\mathbf{x} + \mathbf{r}_1) \delta_g(\mathbf{x} + \mathbf{r}_2) \delta_g(\mathbf{x} + \mathbf{r}_3)$$

Measuring the 4PCF involves counting **quadruplets** of galaxies

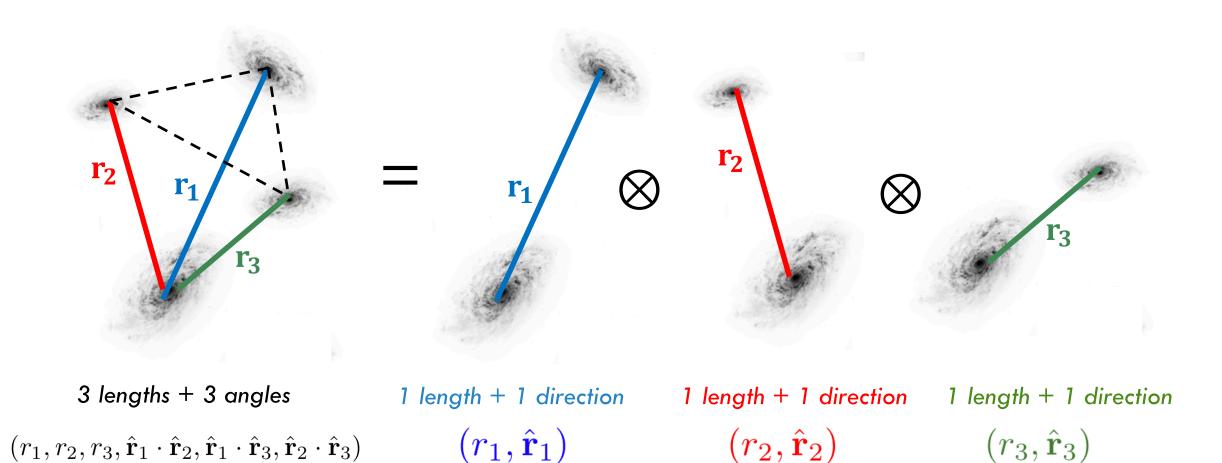
Total number of quadruplets:

$$O(N_{gal}^4)$$

This is too many to count...

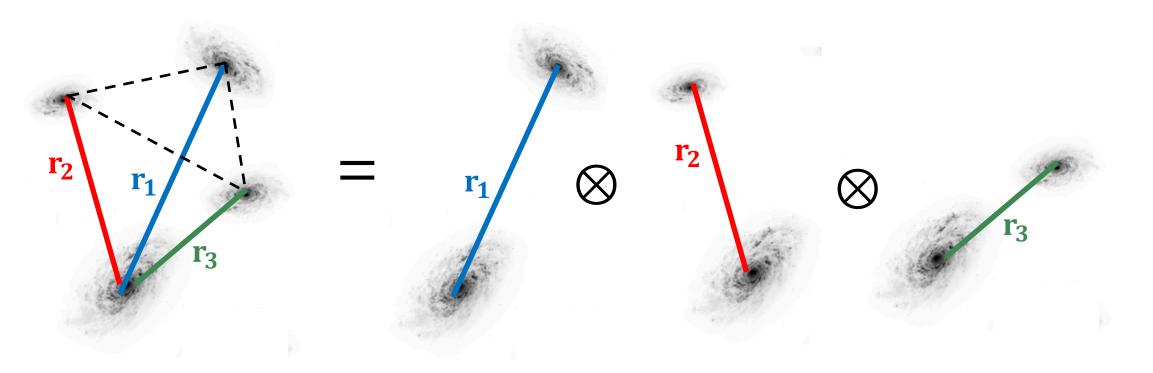


ONE TETRAHEDRON = THREE VECTORS



Philcox+21

ONE TETRAHEDRON = THREE VECTORS



3 lengths + 3 multipoles $(r_1, r_2, r_3, \ell_1, \ell_2, \ell_3)$

 $(r_1, \ell_1, m_1) \qquad (r_2, \ell_2, m_2) \qquad (r_3, \ell_3, m_3)$

ANGULAR MOMENTUM BASIS

Expand 4PCF in basis of **isotropic functions**

$$\zeta_4(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \sum_{\ell_1 \ell_2 \ell_3} \zeta_{\ell_1 \ell_2 \ell_3}(r_1, r_2, r_3) \mathcal{P}_{\ell_1 \ell_2 \ell_3}(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3)$$

$$\uparrow$$
Coefficients

Basis formed from **angular momentum addition** in 3D

$$\mathcal{P}_{\ell_1\ell_2\ell_3}(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3) = \sum_{m_1m_2m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} Y^*_{\ell_1m_1}(\hat{\mathbf{r}}_1) Y^*_{\ell_2m_2}(\hat{\mathbf{r}}_2) Y^*_{\ell_3m_3}(\hat{\mathbf{r}}_3)$$

This is separable in $\widehat{r}_1,\,\widehat{r}_2,\,\widehat{r}_3$

 \mathbf{r}_1

 \otimes

A SEPARABLE BASIS \Rightarrow A QUADRATIC ESTIMATOR

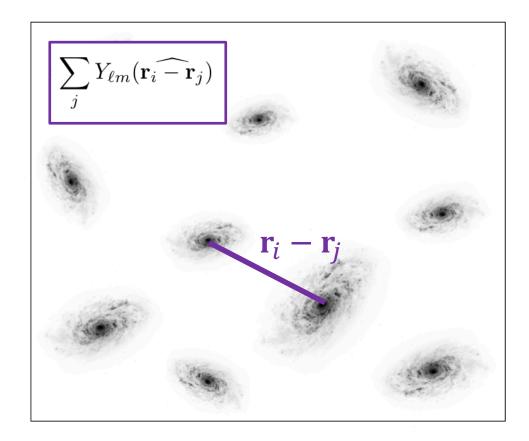
$$\hat{\zeta}_{\ell_1\ell_2\ell_3}(r_1, r_2, r_3) = \sum_{m_1m_2m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \int d\mathbf{x} \, \delta_g(\mathbf{x}) \left[\int_{\mathbf{r}_1} \delta_g(\mathbf{x} + \mathbf{r}_1) Y_{\ell_1m_1}(\hat{\mathbf{r}}_1) \right] \left[\int_{\mathbf{r}_2} \delta_g(\mathbf{x} + \mathbf{r}_2) Y_{\ell_2m_2}(\hat{\mathbf{r}}_2) \right] \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell_3m_3}(\hat{\mathbf{r}}_3) \right] d\mathbf{x} \, \delta_g(\mathbf{x} + \mathbf{r}_3) \left[\int_{\mathbf{r}_3} \delta_g(\mathbf{x} + \mathbf{r}_3) Y_{\ell$$

The estimator **factorizes** into **independent** pieces

To compute the 4PCF: count pairs of galaxies

Total number of pairs: $\mathcal{O}ig(N_{\mathrm{g}}^2ig)$

This can be computed!



ENCORE: ULTRA-FAST N-POINT FUNCTIONS

Public C++/CUDA code

Computes isotropic 2-, 3-, 4-, 5and 6-point correlation functions

Corrects for survey geometry

Requires ~ 10 CPU-hours to compute 4PCF of current data

oliverphilcox/ encore

encore: Efficient isotropic 2-, 3-, 4-, 5- and 6-point correlation functions in C++ and CUDA

A 2	0 ①	☆ 4	ዮ 1	0
Contributors	s Issues	Stars	Fork	

oliverphilcox/encore

encore: Efficient isotropic 2-, 3-, 4-, 5- and 6-point correlation functions in C++ and CUDA - oliverphilcox/encore \oslash github.com

BEYOND THE 4-POINT FUNCTION

This generalizes **beyond** the 4PCF

▷ 5PCF, 6PCF, ...

> Anisotropic correlation functions

Non-Flat Universes

▷ Two, Three, Four, ... Dimensions

Real Space

Redshift Space

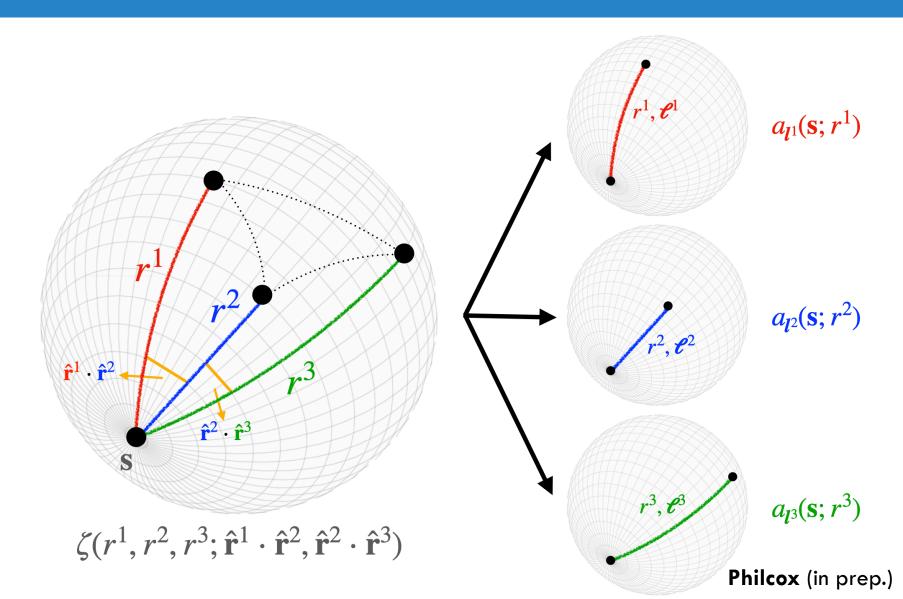
Requires the addition of N angular momenta in D dimensions [i.e. $\mathfrak{so}(D)$ Lie algebra]

CORRELATION FUNCTIONS ON THE 2-SPHERE

Create as basis on the 2-sphere

> Basis functions are $e^{i\ell(\phi_1 - \phi_2)}$

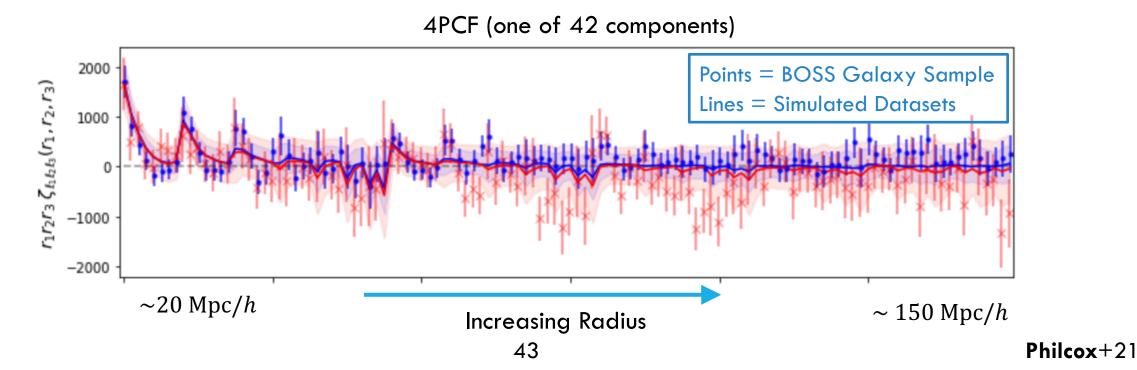
Also computable in $O(N_g^2)$ time



MEASURING THE 4-POINT FUNCTION

Compute the 4PCF from $\sim 10^6$ BOSS galaxies

Do we detect a signal?



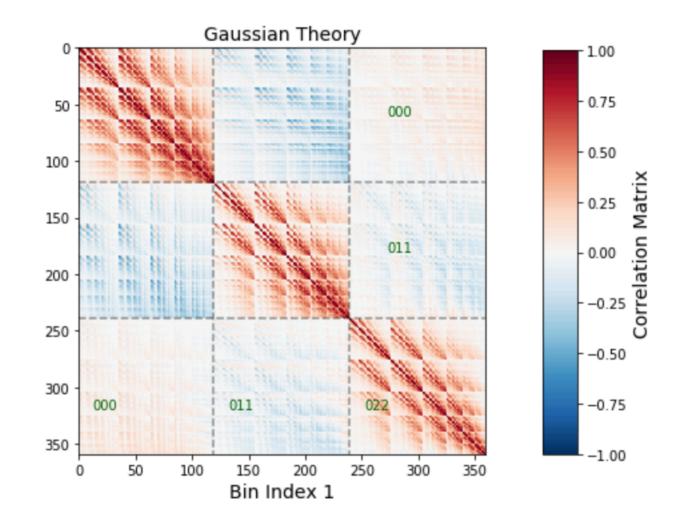
COMPRESSION AND COVARIANCES

The 4PCF is high-dimensional

Use a **linear compression** scheme

Compute covariance analytically

$$\operatorname{Cov}(\zeta_4) = \left\langle \hat{\zeta}_4 \hat{\zeta}_4' \right\rangle - \left\langle \hat{\zeta}_4 \right\rangle \left\langle \hat{\zeta}_4' \right\rangle$$



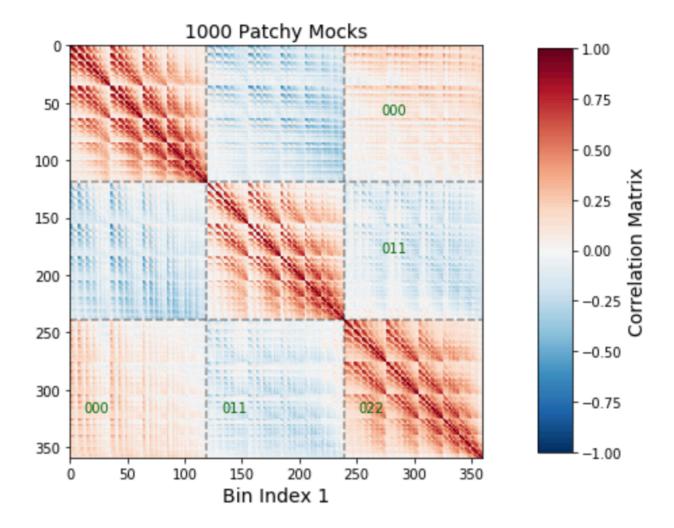
COMPRESSION AND COVARIANCES

The 4PCF is high-dimensional

Use a linear compression scheme

Compute covariance analytically

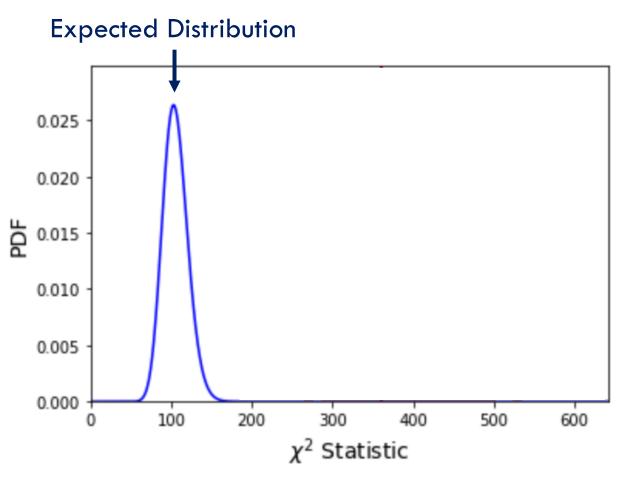
$$\operatorname{Cov}(\zeta_4) = \left\langle \hat{\zeta}_4 \hat{\zeta}_4' \right\rangle - \left\langle \hat{\zeta}_4 \right\rangle \left\langle \hat{\zeta}_4' \right\rangle$$



CAN WE DETECT THE GRAVITATIONAL 4PCF?

> Perform a χ^2 -test to search for a gravitational 4PCF

 \triangleright Null Hypothesis: **4PCF = 0**.

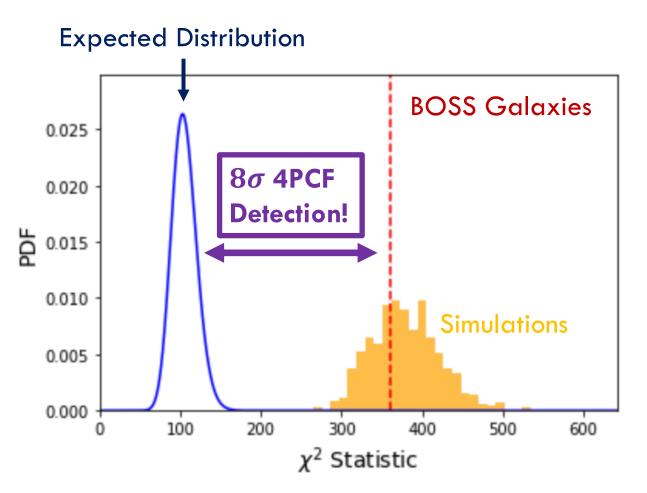


Philcox+21

CAN WE DETECT THE GRAVITATIONAL 4PCF?

> Perform a χ^2 -test to search for a gravitational 4PCF

- \triangleright Null Hypothesis: **4PCF = 0**.
- **Strong** detection of non-Gaussianity!



WHAT'S NEXT FOR THE 4-POINT FUNCTION?

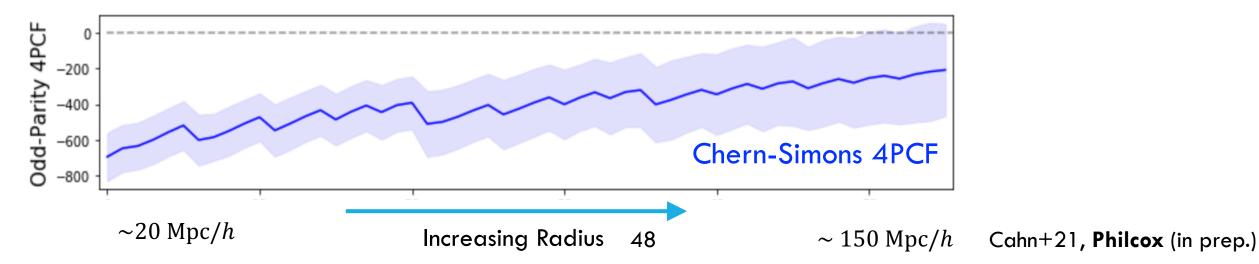
Create a theory model and quantify information content:

 \triangleright Allows **ACDM information** to be extracted

Search for parity-violating physics in the BOSS 4PCF

$$\zeta_4(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3) - \mathbb{P}[\zeta_4(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3)]$$

> Apply to **DESI** data [2× higher precision] and combine with the **CMB**



arXiv 2008.08084 2012.09389 2105.08722 2106.10278 2107.06287 2108.01670 2110.10161

Contact ep2@cantab.acu @oliver_philcox

CONCLUSIONS

o Non-Gaussian statistics:

- 1. Sharpen cosmological constraints
- 2. Probe **non-standard** physics in the early Universe

• Fast and accurate estimators now available

Extract more information from LSS surveys
 without additional cost