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Cosmology from Large Scale Structure
o Large Scale Structure gives comparable
constraints to the CMB

o Major probe: statistics of galaxy positions from 
spectroscopic surveys

o Usually measure galaxy power spectra, which 
encodes:
o Baryon Acoustic Oscillations
o Equality Scale

And thus Ω!, 𝜔" , 𝑛# , 𝐻$ , ∑𝑚%, etc.
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Beyond the Density Field
o Most conventional statistics involve the correlation 
functions of the overdensity field, 𝛿

o If the Universe is Gaussian, the power spectrum of 𝛿
contains all cosmological information

o For a non-Gaussian universe, low-density regions carry a 
lot of cosmological information, and contribute little to 𝛿
[e.g. Pisani+19]

o Various alternative statistics have been proposed:
o Reconstructed Density Fields [e.g. Eisenstein+07]
o Log-normal Transforms [Neyrinck+09, Wang+11]
o Gaussianized Density Fields [Weinberg 92, Neyrinck+17]
o Marked Density Fields [Stoyan 84, White 16, Massara+20]

Massara+20

Overdensity Field



The Marked Density Field
o Define a new density field by weighting by the mark

depending on smoothed overdensity 𝛿! 𝐱

o Controlled by mark parameters: 
o Exponent 𝑝 (𝑝 > 0 to upweight low-density regions)
o Cut-off 𝛿!
o Smoothing scale, 𝑅
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The Marked Density Field
o Define a new density field by weighting by the mark

depending on smoothed overdensity 𝛿! 𝐱

o Controlled by mark parameters: 
o Exponent 𝑝 (𝑝 > 0 to upweight low-density regions)
o Cut-off 𝛿!
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o Shown to give a significant increase in cosmological 
information for real-space matter, particularly:
o Neutrino masses [Massara+20]
o Modified gravity [White 16]
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EFT of LSS: A Lightning Introduction
Effective Field Theory [e.g. Carrasco+12, Baumann+12]

◦ Treat the Universe as an imperfect fluid, including 
viscosity etc.

◦ Expansion variable: smoothed overdensity field 𝛿" 𝒙

Theory is an expansion in terms of non-Gaussian loop 
corrections:

Counterterm encodes backreaction of small-scale 
physics on large-scale modes via free parameter 𝑐#,'(

Linear

1-loop (∼ 𝑃)( (𝑘))

Counterterm



EFT of LSS: Predicting P(k) for Matter
o EFT provides accurate models of the matter power spectrum up to wavenumbers 𝑘 ≈ 0.15ℎ/Mpc at 𝑧 = 0
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EFT of LSS: Predicting M(k) for Matter

o Start by Taylor expanding the mark 𝑚(𝐱):

o Now create a perturbative solution:

o This gives a straightforward theory:
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EFT of LSS: Predicting M(k) for Matter

o One-loop terms have unusual behavior on large-scales:
o Power Spectrum: 𝑃*+,--. 𝑘 ∼ 𝑘(𝑃) 𝑘
oMarked Spectrum: 𝑀*+,--. 𝑘 ∼ 𝑃) 𝑘 or 𝑀*+,--. 𝑘 ∼ const.

o Higher loops do not decay on large scales
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Linear Theory

1-loop EFT

1-loop SPT

Results: Matter in Real Space

o Linear theory (∼ 𝛿!") fails at all scales
o The one-loop terms (∼ 𝛿)/) cannot be neglected   

oThe EFT model works quite well iff:
o Redshift is not too low
o Smoothing (to define the mark) is moderately large

o 1-loop EFT fails when higher order terms become non-
negligible

Philcox+20

𝑧 = 1



What can we learn from EFT? 

o Higher order terms are sourced by two effects:
1. Non-linearities in the mark
2. Non-linearities in the density field

o Small-scales are coupled to large scales, through non-
linearities and gravitational non-Gaussianities.

o This shifts small-scale information, e.g. about neutrinos and 
𝑛#, up to quasi-linear scales
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Results: Matter in Redshift Space

o We can extend the modeling to the 
redshift-space multipoles using EFT

o The theory includes:
o Redshift-Space Distortions
o Fingers-of-God 

o The Taylor series is less well convergent
o Higher-order terms are even more 

important!
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𝑀!,#(𝑘)

𝑀!,$(𝑘)

How can we do better?
o Model breaks down due to significant contributions from 
higher-loop terms on large scales

o Can we re-organize the theory into a (formally) convergent 
series?

o Now all large-scale information is encoded in 𝑀1,$, but this 
depends on all higher loops!

o Ansatz:
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Results: Matter at ∞-loop
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Adding a large scale ∞-loop correction term gives an accurate theory!  
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o The marked density field can place strong constraints 
on cosmological parameters

o It can be modeled using Effective Field Theory but:
o The large-scale theory depends on all loops contributions!

o Adding in a free correction term improves the theory!

More questions? 
Email ohep2@cantab.ac.uk
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• Do the free parameters destroy the information content?

• Is the marked field still useful for biased tracers?

• Should we worry about baryonic effects?
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