

Oliver Philcox (Princeton)

Eisenstein Group Meeting, CfA

Based on:

- Philcox, Massara & Spergel (2020, arXiv: <u>2004.09515</u>)

- Philcox, Aviles & Massara (in prep., arXiv: <u>2010.</u>XXXXX)

Cosmology from Large Scale Structure

 Large Scale Structure gives comparable constraints to the CMB

- Major probe: statistics of galaxy positions from spectroscopic surveys
- Usually measure galaxy power spectra, which encodes:
 - Baryon Acoustic Oscillations
 - Equality Scale

And thus Ω_m , ω_b , n_s , H_0 , $\sum m_{\nu}$, etc.

Beyond the Density Field

 \circ Most conventional statistics involve the correlation functions of the **overdensity** field, δ

 $_{\odot}$ If the Universe is Gaussian, the power spectrum of δ contains **all** cosmological information

 \odot For a **non-Gaussian** universe, **low-density regions** carry a lot of cosmological information, and contribute little to δ [e.g. Pisani+19]

• Various alternative statistics have been proposed:

- Reconstructed Density Fields [e.g. Eisenstein+07]
- Log-normal Transforms [Neyrinck+09, Wang+11]
- Gaussianized Density Fields [Weinberg 92, Neyrinck+17]
- Marked Density Fields [Stoyan 84, White 16, Massara+20]

The Marked Density Field

• Define a new density field by **weighting** by the **mark**

$$egin{aligned} m(\mathbf{x}) &= \left(rac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}
ight)^p \
ho_M(\mathbf{x}) &= m(\mathbf{x})n(\mathbf{x}) = m(\mathbf{x})ar{n}\left[1+\delta(\mathbf{x})
ight] \end{aligned}$$

depending on **smoothed** overdensity $\delta_R(\mathbf{x})$

Controlled by mark parameters:

- \circ Exponent p (p > 0 to upweight low-density regions)
- $\circ \operatorname{Cut-off} \delta_s$
- \circ Smoothing scale, R

The Marked Density Field

• Define a new density field by **weighting** by the **mark**

$$egin{aligned} m(\mathbf{x}) &= \left(rac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}
ight)^p \
ho_M(\mathbf{x}) &= m(\mathbf{x})n(\mathbf{x}) = m(\mathbf{x})ar{n}\left[1+\delta(\mathbf{x})
ight] \end{aligned}$$

depending on **smoothed** overdensity $\delta_R(\mathbf{x})$

• Controlled by **mark parameters**:

- \circ Exponent p (p > 0 to upweight low-density regions)
- \circ Cut-off δ_s
- \circ Smoothing scale, R

The Marked Density Field

• Define a new density field by **weighting** by the **mark**

$$egin{aligned} m(\mathbf{x}) &= \left(rac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}
ight)^p \
ho_M(\mathbf{x}) &= m(\mathbf{x})n(\mathbf{x}) = m(\mathbf{x})ar{n}\left[1+\delta(\mathbf{x})
ight] \end{aligned}$$

depending on **smoothed** overdensity $\delta_R(\mathbf{x})$

• Controlled by **mark parameters**:

 \circ Exponent p (p > 0 to upweight low-density regions)

 $\circ \; {
m Cut-off} \, \delta_s$

 \circ Smoothing scale, R

 Shown to give a significant increase in cosmological information for real-space matter, particularly:

Neutrino masses [Massara+20]

• Modified gravity [White 16]

Fisher Matrix Constraints on Neutrino Mass

EFT of LSS: A Lightning Introduction

Effective Field Theory [e.g. Carrasco+12, Baumann+12]

- Treat the Universe as an imperfect fluid, including viscosity etc.
- Expansion variable: **smoothed** overdensity field $\delta_{\Lambda}(x)$

$$\begin{split} \delta_{\Lambda} + \nabla \cdot \left[(1 + \delta_{\Lambda} \mathbf{v}_{\Lambda}) \right] &= 0 \\ \dot{\mathbf{v}}_{\Lambda} + \left(\mathbf{v}_{\Lambda} \cdot \nabla \right) \mathbf{v}_{\Lambda} &= -\mathcal{H} \mathbf{v}_{\Lambda} - \nabla \phi_{\Lambda} \boxed{-\frac{1}{\rho_{\Lambda}} \nabla_{\underline{\tau}}} \end{split}$$

Theory is an **expansion** in terms of non-Gaussian **loop** corrections:

Counterterm encodes **backreaction** of **small-scale** physics on **large-scale** modes via **free parameter** $c_{s,\Lambda}^2$

EFT of LSS: Predicting P(k) for Matter

• EFT provides accurate models of the matter power spectrum up to wavenumbers $k \approx 0.15 h/\text{Mpc}$ at z = 0

EffectiveHalos & Baldauf Adv. Cosm

EFT of LSS: Predicting M(k) for Matter

 \circ Start by Taylor expanding the mark $m(\mathbf{x})$:

$$m(\mathbf{x}) = \left(\frac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}\right)^p$$
$$\rho_M(\mathbf{x}) = m(\mathbf{x})n(\mathbf{x}) = m(\mathbf{x})\bar{n}\left[1+\delta(\mathbf{x})\right]$$

$$\delta_M(\mathbf{x}) = \frac{\rho_M(\mathbf{x}) - \bar{\rho}_M}{\bar{\rho}_M} = \frac{1}{\bar{m}} \left[1 + \delta(\mathbf{x}) \right] \left[1 - C_1 \delta_R(\mathbf{x}) + C_2 \delta_R^2(\mathbf{x}) - C_3 \delta_R^3(\mathbf{x}) \right] - 1 + \mathcal{O}\left(\delta^4 \right)$$

Marked Overdensity

Smoothed Overdensity

Now create a perturbative solution:

$$\delta_M(\mathbf{x}) \equiv \left(\frac{1}{\bar{m}} - 1\right) + \frac{1}{\bar{m}} \left(\delta_M^{(1)}(\mathbf{x}) + \delta_M^{(2)}(\mathbf{x}) + \delta_M^{(3)}(\mathbf{x}) + \delta_M^{(ct)}(\mathbf{x})\right)$$

• This gives a straightforward theory:

$$M(\mathbf{k}) = |\delta_M(\mathbf{k})|^2 = \frac{1}{\bar{m}^2} \begin{bmatrix} M_{11}(\mathbf{k}) + M_{22}(\mathbf{k}) + 2M_{13}(\mathbf{k}) + 2M_{ct}(\mathbf{k}) \end{bmatrix}$$

Linear Theory 1-loop (~ $P_L^2(k)$) Counterterms
(~ $P_L(k)$) (~ $k^2 P_L(k)$)

EFT of LSS: Predicting M(k) for Matter

$$M(\mathbf{k}) = |\delta_M(\mathbf{k})|^2 = \frac{1}{\bar{m}^2} \begin{bmatrix} M_{11}(\mathbf{k}) + M_{22}(\mathbf{k}) + 2M_{13}(\mathbf{k}) + 2M_{ct}(\mathbf{k}) \end{bmatrix}$$

Linear Theory 1-loop SPT Counterterms
 $(\sim P_L(k))$ $(\sim P_L^2(k))$ $(\sim k^2 P_L(k))$

 \odot One-loop terms have unusual behavior on large-scales:

- \circ **Power Spectrum:** $P_{1-\text{loop}}(k) \sim k^2 P_L(k)$
- Marked Spectrum: $M_{1-\text{loop}}(k) \sim P_L(k)$ or $M_{1-\text{loop}}(k) \sim \text{const.}$

 $_{\odot}$ Higher loops do **not** decay on large scales

Results: Matter in Real Space

• Linear theory (~ δ_L^2) fails at **all** scales • The one-loop terms (~ δ_L^4) **cannot** be neglected

• The EFT model works quite well *iff*:

- \odot Redshift is not too low
- \odot Smoothing (to define the mark) is moderately large
- 1-loop EFT fails when higher order terms become nonnegligible

What can we learn from EFT?

• Higher order terms are sourced by **two** effects:

- 1. Non-linearities in the mark
- 2. Non-linearities in the density field
- Small-scales are coupled to large scales, through nonlinearities and gravitational non-Gaussianities.
- \odot This **shifts** small-scale information, e.g. about **neutrinos** and n_s , up to quasi-linear scales

Results: Matter in Redshift Space

We can extend the modeling to the redshift-space multipoles using EFT

- \odot The theory includes:
 - **R**edshift-**S**pace **D**istortions
 - Fingers-of-God

• The Taylor series is **less** well convergent

 Higher-order terms are even more important!

Philcox+ (in prep.)

How can we do better?

 Model breaks down due to significant contributions from higher-loop terms on large scales

 Can we re-organize the theory into a (formally) convergent series?

$$\bar{m}^2 M^{\text{reorg}}(\boldsymbol{k}) = \frac{M^{r,0}(\boldsymbol{k})}{1} + \frac{M^{r,1}(\boldsymbol{k})}{1} + \dots,$$

$$\sim P_L(\boldsymbol{k}) \sim k^2 P_L(\boldsymbol{k})$$

• Now all large-scale information is encoded in $M^{r,0}$, but this depends on all higher loops!

O Ansatz:

$$M^{r,0}(\mathbf{k})\big|_{\infty-\text{loop}} \approx [C_0 - C_1 W_R(k)]^2 \left\{ (\tilde{a}_0 + \tilde{a}_1 \mu^2) P_L(k) + \tilde{b}_0 \right\}$$

Philcox+ (in prep.)

Results: Matter at ∞-loop

Adding a large scale ∞ -loop **correction term** gives an **accurate** theory!

Philcox+ (in prep.)

Conclusions

- The marked density field can place strong constraints on cosmological parameters
- It can be modeled using Effective Field Theory but:
 The large-scale theory depends on all loops contributions!
- Adding in a **free** correction term improves the theory!

- Do the **free** parameters destroy the **information** content?
- Is the marked field still useful for **biased** tracers?
- Should we worry about **baryonic** effects?

Backup Slides