SIMONS FOUNDATION

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK <mark>Collaborators:</mark> Mikhail Ivanov, Giovanni Cabass, Marko Simonovic, Matias Zaldarriaga

What can galaxy surveys teach us about inflation?

FROM GALAXY SURVEYS TO INFLATION

WHAT CAN WE LEARN ABOUT INFLATION?

3

Energy scale of inflation?

▷ Primordial GWs!

Number of fields in inflation?

b Local primordial non-Gaussianity

Interactions in inflation?

 \triangleright Non-local primordial non-Gaussianity

 $P_{\zeta}(k) \sim A_s \, k^{n_s - 1}$

HOW CAN WE LEARN ABOUT INFLATION?

1. CMB non-Gaussianity

Planck Bispectrum

HOW CAN WE LEARN ABOUT INFLATION?

1. CMB non-Gaussianity

2. Galaxy Bias

HOW CAN WE LEARN ABOUT INFLATION?

1. CMB non-Gaussianity

2. Galaxy Bias

3. Galaxy non-Gaussianity

What statistics should we use?

NON-GAUSSIAN STATISTICS

Standard choices:

1. Galaxy **bispectrum** / three-point function $\langle \delta_g \delta_g \delta_g \rangle$

Measure with window-free Fourier-space estimators

 $\zeta_3(\mathbf{r}_1,\mathbf{r}_2)$

 \mathbf{r}_2

https://github.com/oliverphilcox/Spectra-Without-Windows

7

Useful for:

Equilateral $f_{\rm NL}$

Orthogonal $f_{\rm NL}$

Local $f_{\rm NL}$

NON-GAUSSIAN STATISTICS

Standard choices:

1. Galaxy **bispectrum** / three-point function $\langle \delta_g \delta_g \delta_g \rangle$

2. Galaxy trispectrum / four-point function $\langle \delta_g \delta_g \delta_g \delta_g \rangle$

Measure with efficient real-space estimators

 $\zeta_4(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$

MODELING GALAXY SURVEYS

We need to model *both* inflation and late-time behavior

Tool: the **Effective Field Theory** of LSS

> Analytic theory for $\delta(\mathbf{x})$, based on the nonideal fluid equations

Major Ingredient: Back-reaction of smallscale physics on large-scale modes

e.g. Baumann, Carrasco, Assassi, Senatore, Zaldarriaga, etc.

CONSTRAINTS ON $f_{\rm NL}$

CONSTRAINTS ON $f_{\rm NL}$

Future surveys will do **much** better for primordial non-Gaussianity

COSMOLOGICAL PARITY-VIOLATION

The primordial Universe could contain mirror asymmetry

• Not constrained by the CMB (yet)

Search for in the

four-point function!

12

#

PARITY-ODD 4-POINT FUNCTIONS

PARITY-ODD 4-POINT FUNCTIONS

Conclusions

- Simulations do not capture noise properties of the data
- **Or** we have detected parity-violating inflation at 3σ ???

14

INFLATIONARY PARITY-VIOLATION

Possible models:

- 1. Inflationary particle exchange?
- 2. Ghost inflation?
- 3. Dynamical Chern-Simons inflation?
- No evidence for any models so far!

Stay tuned for CMB results...

Ghost inflation!

Chern-Simons inflation

15 Cabass+22, Cabass, **Philcox**+22c, Creque-Sarbinowski, **Philcox** (in prep x2.)

CONCLUSIONS

Galaxy surveys can measure the Universe's
initial conditions

Safaris are an excellent place for cosmology

Constraints are (mostly) weak compared to the
CMB but will get much stronger soon!