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The Curse of Dimensionality
o Cosmological observables are high-dimensional, e.g.;
o BOSS had ∼ 100 power spectrum bins
o Tomographic analyses will have many more

but these are only used to measure a few parameters

o Inference proceeds via a Gaussian likelihood:

𝐿 𝜃 ∝ exp −
1
2 (𝑑 − 𝑚 𝜃 𝐶!"(𝑑 − 𝑚 𝜃 )

which requires the inverse covariance matrix

o Normally use a sample covariance:

with samples from N-body simulations

Gil-Marin+16, Ivanov+19
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The Curse of Dimensionality
o Need 𝑁!"#$ > 𝑁%&' to invert the sample covariance

o For finite 𝑁!"#$ this is a biased inverse: [Anderson’03/Hartlap+07]

(cf. Sellentin & Heavens ‘15)

o Noise in the covariance matrix gives stochastic shifts in the best-fit 
parameters: [Percival+13]

o Must inflate the output covariances by ∼ 1 + #!"#!#$%&%'
#'()*

o This loses constraining power

o Can be reduced if we compress the data

Gil-Marin+16, Ivanov+19
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Creating a Metric in Parameter Space
o Consider an analysis measuring parameters 𝜃⃗

o The space of all physical models for the analysis are described by a 
manifold (with boundary)

Philcox+20*somewhat inspired by gravitational wave analyses [e.g. Roulet+19]



Creating a Metric in Parameter Space
o Consider an analysis measuring parameters 𝜃⃗

o The space of all physical models for the analysis are described by a 
manifold (with boundary)

o Co-ordinates on the manifold à cosmological + nuisance parameters:
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Creating a Metric in Parameter Space
o Consider an analysis measuring parameters 𝜃⃗

o The space of all physical models for the analysis are described by a 
manifold (with boundary)

o Co-ordinates on the manifold à cosmological + nuisance parameters:

𝜃⃗(%) = {𝐻'
% , 𝜔()*

% , 𝑏"
(%), … }

o The tangent vector to each point is the theory model

noise-weighting for later use. C is a fiducial covariance.

𝜃⃗(,) = {𝐻.
, , 𝜔/01

, , 𝑏,
(,), … }

𝜃⃗(2) = {𝐻.
2 , 𝜔/01

2 , 𝑏,
(2), … }

𝜃⃗(3) = {𝐻.
3 , 𝜔/01

3 , 𝑏,
(3), … }𝑋(+)

𝑋(()

𝑋(-)

Philcox+20



Creating a Metric in Parameter Space
o We define an inner product on the manifold using the tangent 
vectors:
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Creating a Metric in Parameter Space
o We define an inner product on the manifold using the tangent 
vectors:

o This gives a notion of distance between two points*

𝑑&.( = 𝑋(&) − 𝑋 . | 𝑋 & − 𝑋(.)

This is just a Euclidean metric.

o In terms of P:

𝑑&.( =,
/%

𝑃/ 𝜃 & − 𝑃/ 𝜃 . C/%0+ 𝑃% 𝜃 & − 𝑃%(𝜃 . )

which is just the Gaussian 𝜒(.
𝜃⃗(,) = {𝐻.

, , 𝜔/01
, , 𝑏,

(,), … }

𝜃⃗(2) = {𝐻.
2 , 𝜔/01

2 , 𝑏,
(2), … }

𝜃⃗(3) = {𝐻.
3 , 𝜔/01

3 , 𝑏,
(3), … }𝑋(+)

𝑋(()

𝑋(-)

Philcox+20*Assuming Riemannian geometry, i.e. a Gaussian likelihood
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The Subspace Projection
o The tangent vectors 𝑋 are high-dimensional (size 𝑁!"#)

o Can we identify a low-dimensional subspace that preserves 
the distance information?

o To do this:
1. Draw samples from the manifold (i.e. {𝜃(&)})
2. Compute the tangent-vectors 𝑋 𝜃 at each point
3. Perform a Singular Value Decomposition

𝜃⃗(,) = {𝐻.
, , 𝜔/01

, , 𝑏,
(,), … }
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2 , 𝜔/01

2 , 𝑏,
(2), … }

𝜃⃗(3) = {𝐻.
3 , 𝜔/01

3 , 𝑏,
(3), … }𝑋(+)

𝑋(()

𝑋(-)
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The Subspace Projection

o This defines a set of basis vectors:

o All information is in the 𝑐(") subspace coefficients

o If 𝑁&' = 𝑁!"# this is just a rotation

o If 𝑁&' < 𝑁!"# we have compressed the statistic

Basis vectorsSet of samples

Subspace Coefficients
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Properties of the Decomposition
o The linear decomposition is optimal with respect to 𝑑+ ≡ 𝜒+

o We can set the size of the space robustly:

o Choose 𝑁12 by requiring that the error in 𝜒( is below some 
threshold, averaged over the prior

o If we need higher precision, just use more basis vectors!

o All the analysis is in terms of 𝑁&' subspace coefficients

Philcox+20
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Analysis in the Projected Subspace
o How do we apply this to data?

o Likelihood of statistic P:

o Likelihood of subspace coefficients:

where 𝑐̂ are observed coefficients: 𝑐̂3 = ∑/% 𝑉/3 C/%
0!" 7𝑃%

Philcox+20

True Covariance

DataModel

Model
Data

True Covariance (almost diagonal)

+𝒄



Overview of the Procedure

Generating the Basis Vectors

1. Draw a set (∼ 104) of cosmological + nuisance parameters from the priors

2. Compute the noise-weighted statistic at each point forming a template bank

3. Perform an SVD on these samples to identify basis vectors

4. Restrict to the first 𝑁12 vectors, setting 𝑁12 by constraining error in 𝜒(

Performing the Analysis

1. Project the data onto the 𝑁12 subspace-coefficients

2. Run MCMC with the Gaussian subspace likelihood:

Requirements

- Gaussian Likelihood

- Theory Model

- Priors on 
parameters

- Approximate 
(smooth) fiducial 
covariance*

*only used to define basis vectors

Philcox+20



Comparison to Other Approaches

Covariance Matrix PCA [e.g. Scoccimarro 2000]

1. Form the observable covariance matrix

2. Perform a Principal Component Analysis of this

3. Restrict to the first 𝑁 basis vectors

4. Project the data onto these

o PCA finds directions that contribute most to 
signal-to-noise
o Are these directions useful?

o Our SVD finds the directions that contribute most 
to the log-likelihood
o Optimal for a specific analysis

Beutler+16

Power Spectrum Covariance

Basis Vectors

𝐶 = 𝑊Λ𝑊5
PCA

Coefficients

𝑃 𝑘 ≈,
&

a&𝑊&(𝑘)



Comparison to Other Approaches

Covariance Matrix PCA [e.g. Scoccimarro 2000]

1. Form the observable covariance matrix

2. Perform a Principal Component Analysis of this

3. Restrict to the first 𝑁 basis vectors

4. Project the data onto these

o PCA finds directions that contribute most to 
signal-to-noise
o Are these directions useful?

o Our SVD finds the directions that contribute most 
to the log-likelihood
o Optimal for a specific analysis

MOPED [e.g. Heavens 2000]

o Compresses to 𝑁6/7/! numbers based on the 
Fisher matrix

o Technically only exact for Gaussian posterior [but 
often a good approximation]

o Decomposition centered around a point in space
o May have to iterate the procedure

o Number of basis vectors is fixed

o Our SVD does not assume a Gaussian posterior
o Invariant to reparametrizations of manifold

o Non-Gaussianity and multi-modality allowed

o Arbitrarily accurate given large enough 𝑁-.

[see also Alsing+18 , KL: Tegmark+97]



Application: BOSS Power Spectra
Test Case: Full-Shape analysis of BOSS power spectra [Ivanov+19]

• 10-parameter analysis:

• 96-bin power spectrum (high-z NGC sample, monopole + quadrupole)

• Covariance estimated from MultiDark-Patchy mocks [Kitaura+15]

To generate basis vectors:

o Compute theory model (1-loop Effective Field Theory) at 10+
random draws in parameter space

o Fiducial covariance is a Gaussian model [Wadekar+19]

o Set 𝑁,- = 12, by setting Δ𝜒. < 0.1 averaged across prior
Philcox+20

BOSS mean-of-mocks analysis

No bias from the subspace decomposition!



Application: BOSS Power Spectra
More realistic case: data-set is a single Patchy mock

o Sample covariance from:
a) 125 mocks
b) 2000 mocks

o Should inflate posterior contours to account for stochastic 
shifts from noise in the covariance matrix* [Percival+13]

o Significant shifts from using 125 mocks with 96-bin P(k)

o Inflation factor is large

Philcox+20

(Δ𝜃)(≈ (𝑁%&' − 𝑁6/7/!)/𝑁!"#$

Noise-induced shift

Error Inflation

*Assuming Gaussian likelihoods, cf. Sellentin & Heavens ‘15



No shift

No Inflation

Application: BOSS Power Spectra
More realistic case: data-set is a single Patchy mock

o Sample covariance from:
a) 2000 mocks
b) 125 mocks

o Should inflate posterior contours to account for stochastic 
shifts from noise in the covariance matrix* [Percival+13]

o No significant shifts from using 125 mocks with 12 SVs

o Inflation factor is small

Philcox+20

(Δ𝜃)(≈ (𝑁%&' − 𝑁6/7/!)/𝑁!"#$

*Assuming Gaussian likelihoods, cf. Sellentin & Heavens ‘15



Beyond Power Spectra

o This applies to any Gaussian-likelihood analysis, given a 
theory model, parameter priors and a fiducial covariance.

o More precise data will require more coefficients (fixing 
Δ𝜒. < 0.1)
o Adding reconstructed BAO information: [cf. Philcox+20a]

o 𝑁45 = 14

o Increasing volume by 10x [DESI-like]:
o 𝑁45 = 16

o 2135-bin BOSS bispectrum
o 𝑁45 = 9

o Power spectrum + bispectrum
o 𝑁#$ = 21

Philcox+20

Average 𝝌𝟐 error across prior



o Using model-specific subspace projections we can heavily 
compress cosmological data-sets

o The decomposition is
1. Robust and accurate

2. Widely applicable

3. Fast and simple to use

o Reduce impact of covariance matrix noise:
o Sharpening parameter constraints

o Allows fewer mocks to be computedMore questions? 
Email ohep2@cantab.ac.uk

ConclusionsarXiv:
2009.03311

mailto:ohep2@cantab.ac.uk
https://arxiv.org/abs/2009.03311
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Altering the Data Covariance Matrix
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Altering the Fiducial Covariance Matrix
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Noise in the Covariance Matrix
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Single Mock Comparison

Philcox+20


