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The Curse of Dimensionality

2000
o Cosmological observables are high-dimensional, e.g.;
o BOSS had ~ 100 power spectrum bins
o Tomographic analyses will have many more
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but these are only used to measure a few parameters

o

o Inference proceeds via a Gaussian likelihood: , , , ,
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o Normally use a sample covariance:
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with samples from N-body simulations
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The Curse of Dimensionality

o Need N,y ock > Npin to invert the sample covariance

o For finite N,,,ck this is a biased inverse: [Anderson’02/Hartlap+07]
f ]\"mock_]\]'bin_2

H
Nmock —1

x(6) = fu x*(6)

wD - fH X Cl_)lv

(cf. Sellentin & Heavens ‘15)

o Noise in the covariance matrix gives stochastic shifts in the best-fit

parameters: [Percival+13]
Nbin_Nparam

o Must inflate the output covariances by ~ 1 +
Nmock

o This loses constraining power

o Can be reduced if we compress the data
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Creating a Metric in Parameter Space

-
o Consider an analysis measuring parameters 6

o The space of all physical models for the analysis are described by a
manifold (with boundary)

. . Philcox+2
*somewhat inspired by gravitational wave analyses [e.g. Roulet+19] coxr20



Creating a Metric in Parameter Space

o Consider an analysis measuring parameters 6

-

5(2) — {H(Z) w(z) b(z) }
o The space of all physical models for the analysis are described by a S
manifold (with boundary) *

o Co-ordinates on the manifold - cosmological + nuisance parameters:
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g1 = {H . ,a)c;m,b1 ) e ) *

6@ = (H® o p® 3

cdm’
60 = (H® 2 pM 3

L cdm’

Philcox+20



Creating a Metric in Parameter Space

o Consider an analysis measuring parameters 6

o The space of all physical models for the analysis are described by a
manifold (with boundary)

o Co-ordinates on the manifold = cosmological + nuisance parameters:

Q(l) — {H(l)’w(l) bil), }

cdm’

o The tangent vector to each point is the theory model

Xa(0) = C, V2 [Py(0) — Py
ab

noise-weighting for later use. C is a fiducial covariance.
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Creating a Metric in Parameter Space

o We define an inner product on the manifold using the tangent
vectors:

(X(i)|X(J')> — Zxéi)xc(lj)

(HP, 0@ b, .
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Creating a Metric in Parameter Space

o We define an inner product on the manifold using the tangent

vectors:
X(1)|X(J) X(l)x(]) \
Z 9(2) — {H(Z) gi)m b(z) 3
o This gives a notion of distance between two points* M
x(2)

dizj _ (X(i) _ X(J')| x@ _X(J')>

This is just a Euclidean metric.

x3)
o In terms of P:
¥ (@ f’ 6% = (H® ) p® .
ah = ) (P(69) = Pu(69)) €G3 (Ro(6) = P (09)
ab FO = (H®, @ pD | 3
which is just the Gaussian y?. <X

*Assuming Riemannian geometry, i.e. a Gaussian likelihood Philcox+20



The Subspace Projection

o The tangent vectors X are high-dimensional (size Ny;,,)

—

6@ = (H®, 0@ pP, 3
o Can we identify a low-dimensional subspace that preserves
the distance information? M

x(2)
o To do this:
1. Draw samples from the manifold (i.e. {(}) X3
2. Compute the tangent-vectors X (0) at each point ,
3. Perform a Singular Value D iti dis
erform a Singular Value Decomposition Y@ "¢¢ 50 — (1 @ O 3
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Basis vectors &
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The Subspace Projection

Xia = Z UiaDoVaa
@

/ Basis vectors 5 \
Set of samples 6@ = (H®, 0@ pP, 3

) Medm?

o This defines a set of basis vectors:

x@ ¢
Nsv
Xcsz) ~ Z Cg’:)Vaa
a=1 \
3
Subspace Coefficients X( )3
e

o All information is in the ¢ subspace coefficients

_m® 3 3
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o If Ngyy = Np;ip, this is just a rotation

60 ="M, 0@ bW, .3

cdm

o If Ngy < Npin, we have compressed the statistic &
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Properties of the Decomposition

o The linear decomposition is optimal with respect to d? = y?

—

6@ = (HP, 0w b, ..}

) Medm?

o We can set the size of the space robustly:

x@ ¢
o Choose N, by requiring that the error in x? is below some
threshold, averaged over the prior
3
o If we need higher precision, just use more basis vectors! X )(3)
(o

el _ y® 3 3
C .. . o 0 ={H", 0y by, )
o All the analysis is in terms of Ng;, subspace coefficients
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Analysis in the Projected Subspace

o How do we apply this to data?

o Likelihood of statistic P: Model D‘ita

|
~2l0g £(0) = () = 3 (Pu — Pa(0)) Cploy (B — Po(0))
ab
True Covariance

o Likelihood of subspace coefficients:
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Overview of the Procedure

Requirements

Generating the Basis Vectors

. : . - Gaussian Likelihood
Draw a set (~ 10%) of cosmological + nuisance parameters from the priors

1

2. Compute the noise-weighted statistic at each point forming a template bank - Theory Model
3. Perform an SVD on these samples to identify basis vectors - Priors on

4. Restrict to the first Ng;, vectors, setting Ng, by constraining error in y? parameters

- Approximate

Performing the Analysis (smooth) fiducial
covariance* .

1. Project the data onto the N, subspace-coefficients

*only used to define basis vectors
2. Run MCMC with the Gaussian subspace likelihood:

Ngv Ngv

—2log L(0) =YY (éa—cal0))Cpl (s —cs(0))

a=1 =1 Philcox+20



Comparison to Other Approaches

Power Spectrum Covariance

Covariance Matrix PCA [e.g. Scoccimarro 2000]

1. Form the observable covariance matrix

o
-
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2. Perform a Principal Component Analysis of this
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3. Restrict to the first N basis vectors

4. Project the data onto these

02<2<0.5
0.01 0.10 0.

k [h/Mpc]

o PCA finds directions that contribute most to
signal-to-noise
o Are these directions useful?
PUO ~ ) aWi(k)

o Our SVD finds the directions that contribute most - \

to the log-likelihood
Basis Vectors

o Optimal for a specific analysis
Coefficients

Beutler+16



Comparison to Other Approaches

Covariance Matrix PCA [e.g. Scoccimarro 2000]

1. Form the observable covariance matrix
2. Perform a Principal Component Analysis of this
3. Restrict to the first N basis vectors

4. Project the data onto these

o PCA finds directions that contribute most to
signal-to-noise

o Are these directions useful?

o Our SVD finds the directions that contribute most
to the log-likelihood

o Optimal for a specific analysis

[see also Alsing+18 , KL

MOPED [e.g. Heavens 2000]

o Compresses to Ny ;rqm NumMbers based on the
Fisher matrix

o Technically only exact for Gaussian posterior [but
often a good approximation]

o Decomposition centered around a point in space

o May have to iterate the procedure
o Number of basis vectors is fixed

o Our SVD does not assume a Gaussian posterior
o Invariant to reparametrizations of manifold
o Non-Gaussianity and multi-modality allowed

o Arbitrarily accurate given large enough Ngy,

: Tegmark+97]



Application: BOSS Power Spectra

Test Case: Full-Shape analysis of BOSS power spectra [lvanov+19] BOSS mean-of-mocks analysis
* 10-parameter analysis: W 96-bin Pk
I 48 SVs
S {wcdmyAs/As,ﬁdaha'"} X {blabZabG25b47Cs,0’cs,27PShot}' EEN 125Vs

* 96-bin power spectrum (high-z NGC sample, monopole + quadrupole)

- Covariance estimated from MultiDark-Patchy mocks [Kitaura+15]

0.35¢

Qm

030F

To generate basis vectors:

0.25

o Compute theory model (1-loop Effective Field Theory) at 104
random draws in parameter space

o Fiducial covariance is a Gaussian model [\Wadekar+19] T TS
HQ Qm [of:}

No bias from the subspace decomposition!

Philcox+20

o Set Ngy = 12, by setting Ay? < 0.1 averaged across prior




Application: BOSS Power Spectra

More realistic case: data-set is a single Patchy mock

o Sample covariance from:
a) 125 mocks

b) 2000 mocks

o Should inflate posterior contours to account for stochastic
shifts from noise in the covariance matrix™* [Percival+13]

(AH)Zz (Nbin _ Nvaram)/Nmock

o Significant shifts from using 125 mocks with 96-bin P(k)

o Inflation factor is large

*Assuming Gaussian likelihoods, cf. Sellentin & Heavens ‘15

Error Inflation
——l

Bl 125 mocks

B 2000 mocks

B 125 mocks: Rescaled
0 2000 mocks: Rescaled

Noise-induced shift

E 1 1 1 Ii 1 ‘, I§ 1
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(a) 96-bin Power Spectrum
Philcox+20



Application: BOSS Power Spectra

More realistic case: data-set is a single Patchy mock

o Sample covariance from:
a) 2000 mocks

b) 125 mocks

o Should inflate posterior contours to account for stochastic = 033

shifts from noise in the covariance matrix™ [Percival+13]

(AH)Zz (Nbin _ Nvaram)/Nmock

o No significant shifts from using 125 mocks with 12 SVs

o Inflation factor is small

*Assuming Gaussian likelihoods, cf. Sellentin & Heavens ‘15
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(c) 12 Subspace Coefficients . .,



Beyond Power Spectra

o This applies to any Gaussian-likelihood analysis, given a
theory model, parameter priors and a fiducial covariance.

o More precise data will require more coefficients (fixing
A)(Z < 0.1)
o Adding reconstructed BAO information: et philcox20a]
o Ngy = 14
o Increasing volume by 10x [DESI-like]:
o Ngy = 16
0 2135-bin BOSS bispectrum
o Nsy =9
o Power spectrum + bispectrum
o Ngy = 21

Average x? error across prior

1

Ll

X ° x  Power Spectrum
° m Bispectrum
im X * W e Combination
x I I
n X P
" X « i
o
n x’:k
-
-------------------------------------------------------- .
1
1
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1
1
1
1
1
10° 10!
Nsv
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Conclusions

o Using model-specific subspace projections we can heavily
compress cosmological data-sets

o The decomposition is
1. Robust and accurate
2. Widely applicable

3. Fast and simple to use

o Reduce impact of covariance matrix noise:

o Sharpening parameter constraints

“More questlons7 ' oy

Email heZ@cantab ac. uk

o Allows fewer mocks to be computed
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https://arxiv.org/abs/2009.03311
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Altering the Data Covariance Matrix
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Altering the Fiducial Covariance Matrix
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Noise in the Covariance Matrix
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Single Mock Comparison
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