What's Next for the EFTofLSS*?

INSTITUTE FOR ADVANCED STUDY

*Effective Field Theory of Large Scale Structure

Oliver Philcox (Princeton)

UK Cosmology Meeting, September 2020

PRINCETON UNIVERSITY

Based on: 2002.04035, 2008.08084, 2004.09515 & 2006.10055

IllustrisTNG

Elena Massara

Francisco Villaescusa-Navarro David Spergel

Blake Sherwin

Gerrit Farren

Eric Baxter

Mikhail Ivanov

Marcel Schmittfull

Marko Simonovic

Matias Zaldarriaga

EFT of Matter: A Lightning Introduction

Standard Perturbation Theory [e.g. Bernardeau+02]

- Solve the ideal fluid equations
- Expansion variable: overdensity field $\delta(x)$
- Assume valid on all scales

Effective Field Theory [e.g. Carrasco+12, Baumann+12]

- Solve the **non-ideal** fluid equations, including **viscosity** etc.
- Expansion variable: **smoothed** overdensity field $\delta_{\Lambda}(x)$
- $^\circ~$ Theory **only** valid for $k < \Lambda$
- \odot EFT includes:
 - Backreaction of small-scale physics on large-scale modes
 - Controlled ultraviolet (UV) behavior
 - Proper treatment of **non-perturbative** long-wavelength displacements [e.g. Senatore+14]

$$\dot{\delta}_{\Lambda} + \nabla \cdot \left[(1 + \delta_{\Lambda} \mathbf{v}_{\Lambda}) = 0 \\ \dot{\mathbf{v}}_{\Lambda} + (\mathbf{v}_{\Lambda} \cdot \nabla) \mathbf{v}_{\Lambda} = -\mathcal{H} \mathbf{v}_{\Lambda} - \nabla \phi_{\Lambda} \left[-\frac{1}{\rho_{\Lambda}} \nabla \underline{\underline{\tau}} \right]$$

At one-loop, EFT adds a **free parameter** c_s^2 encoding **small-scale physics** that must be **fit** to data

EFT of Matter: A Lightning Introduction

Standard Perturbation Theory [e.g. Bernardeau+02]

- Solve the **ideal** fluid equations
- Expansion variable: overdensity field $\delta(x)$
- Assume valid on all scales

Effective Field Theory [e.g. Carrasco+12, Baumann+12]

- Solve the **non-ideal** fluid equations, including **viscosity** etc.
- Expansion variable: **smoothed** overdensity field $\delta_{\Lambda}(x)$
- $^\circ~$ Theory **only** valid for $k < \Lambda$
- EFT includes:
 - Backreaction of small-scale physics on large-scale modes
 - Controlled ultraviolet (UV) behavior
 - Proper treatment of **non-perturbative** long-wavelength displacements [e.g. Senatore+14]

$$\dot{\delta}_{\Lambda} + \nabla \cdot \left[(1 + \delta_{\Lambda} \mathbf{v}_{\Lambda}) \right] = 0 \dot{\mathbf{v}}_{\Lambda} + (\mathbf{v}_{\Lambda} \cdot \nabla) \mathbf{v}_{\Lambda} = -\mathcal{H} \mathbf{v}_{\Lambda} - \nabla \phi_{\Lambda} \left[-\frac{1}{\rho_{\Lambda}} \nabla \underline{\underline{\tau}} \right]$$

Biased Tracers

 \circ Matter is not observed directly \rightarrow must predict galaxy statistics

 \circ Simple approach: expand the galaxy overdensity in powers of δ :

$$\delta_g(\mathbf{x}) = b_1 \delta(\mathbf{x}) + \frac{b_2}{2} \delta^2(\mathbf{x}) + \frac{b_3}{6} \delta^3(\mathbf{x}) + \dots$$

 \circ The EFT approach: include all possible parameters allowed by symmetry

$$\delta_g = b_1 \delta + \epsilon + \frac{b_2}{2} \delta^2 + b_{\mathcal{G}_2} \mathcal{G}_2 + \frac{b_3}{6} \delta^3 + b_{\delta \mathcal{G}_2} \delta \mathcal{G}_2 + \frac{b_3}{2} \mathcal{G}_3 + b_{\Gamma_3} \Gamma_3 + R_*^2 \partial^2 \delta$$

with density operators, tidal operators, stochastic operators, and non-local operators (all integrated over a lightcone)

• Also needs **redshift-space** distortions: $s = r + \frac{v \cdot \hat{z}}{aH} \hat{z}$

Biased Tracers

• Full 1-loop EFT model for the redshift-space power spectrum of biased tracers [e.g. Perko+16]

$$P_{g,\ell}(k) = \frac{P_{g,\ell}^{\text{tree}}(k)}{P_{g,\ell}^{\text{tree}}(k)} + \frac{P_{g,\ell}^{1-\text{loop}}(k)}{P_{g,\ell}^{\text{noise}}(k)} + \frac{P_{g,\ell}^{\text{ctr}}(k)}{P_{g,\ell}^{\text{ctr}}(k)}$$

Linear Theory 1-loop SPT Stochastic Terms Counterterms

Seven nuisance parameters:

$$\{b_1, b_2, b_{G_2}, c_{s,0}, c_{s,2}, b_4, P_{shot}\} \times \{\omega_b, \omega_{cdm}, h, A_s, \sum m_{\nu}, n_s, ...\}$$

• Sub-percent accurate on large-scales

Nishimichi+20

Beyond the Blackboard

https://github.com/michalychforever/CLASS-PT

o Can we use EFT to fit the full-shape of observed galaxy power spectra?

Ivanov+19a,b, d'Amico+19, Chudaykin+20, Philcox+20a

https://github.com/michalychforever/class-p

Cosmology from Galaxies + EFT

 Get competitive constraints on cosmology from galaxy power spectra plus BBN [Ivanov+19]

 Constraints are strengthened by combining with extra BAO information from *reconstruction* [Philcox+20a]

H_0	BOSS FS+BBN	BOSS FS+BAO+BBN	Planck 2018
	68.55 <u>+</u> 1.5	67.9 ± 1.1	$67.1^{+1.3}_{-0.72}$

 As strong H₀ constraints as *Planck* without using CMB data!

Ivanov+19a, Philcox+20a

H₀ without the Sound Horizon

 \circ H₀ information comes from two **standard rulers**:

- 1. Matter-radiation **equality** ($z \sim 3600$)
- 2. **B**aryon Acoustic Oscillation scale ($z \sim 1100$)
- Can **isolate** the **equality** information by **removing** the BBN prior on ω_b in the EFT analysis

Baxter+20, Philcox+20d

H_o without the Sound Horizon

 \circ H₀ information comes from two **standard rulers**:

- 1. Matter-radiation **equality** ($z \sim 3600$)
- 2. **B**aryon Acoustic Oscillation scale ($z \sim 1100$)

 \circ Can **isolate** the **equality** information by **removing** the BBN prior on ω_b in the EFT analysis

Ш	BOSS + Pantheon	+ Planck lensing
Π0	$65.1^{+3.0}_{-5.4}$	$70.6^{+3.7}_{-5.1}$

 \circ Galaxy constraints are **independent** of sound-horizon physics, and are $\sim 2\sigma$ below SH0ES

 $\circ \sigma_{H_0} \sim 1.5 ~{
m km}~{
m s}^{-1}{
m Mpc}^{-1}$ will soon be possible with *Euclid*

Baxter+20, Philcox+20d

Alternative Density Statistics

 $\,\circ\,$ Low-density regions carry a lot of information but contribute little to δ [e.g. Pisani+19]

 Alternative statistics can help here, e.g. the marked density field [Stoyan 84, White 16, Massara+20]

• This is a **local-overdensity** weighted density field, shown to give strong constraints on the **neutrino** mass [Massara+20]

$$\rho_m(\mathbf{x}) \propto \frac{\rho(\mathbf{x})}{[c + \rho_R(\mathbf{x})]^p}$$

o Can we understand this using EFT?

White 16, Massara+20

Understanding Marked Statistics

Philcox+20c, Philcox+ (in prep)

EFT + The Halo Model

 EFT gives a highly accurate P(k) model at low k but fails close to the non-linear scale

• The halo model gives a rough model of P(k) up to high k

In combination, we can get accurate models up to high-k

Philcox+ 2020b

EFT + The Halo Model

 EFT gives a highly accurate P(k) model at low k but fails close to the non-linear scale

• The halo model gives a rough model of P(k) up to high k

In combination, we can get accurate models up to high-k

Philcox+ 2020c

EffectiveHalos.rtfd.io

The Effective Halo Model

 The Effective Halo Model is based on perturbation theory and is 1% accurate for a large range of cosmologies.

Philcox+ 2020b, Philcox+ (in prep.)

The Effective Halo Model

- The Effective Halo Model is based on perturbation theory and is 1% accurate for a large range of cosmologies.
- We can also predict covariances between halo number counts and P(k).
- This can be used to compute projected spectra e.g.

Weak Lensing

 \odot Joint analysis of lensing and $\ensuremath{\textit{thermal SZ}}$

Philcox+ 2020b, Philcox+ (in prep.)

Summary

The *EFTofLSS*:

- \circ Gives **accurate** models for density statistics
- $\,\circ\,$ Allows for parameter inference shedding light on H_0 tension
- Helps us to understand alternative statistics
- Can be combined with the halo model to accurately predict all scales

Many more possibilities, e.g.:

- Bispectra
- Field-level EFT
- Other statistics
- Weak lensing